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Abstract

This thesis examines Image Aesthetic Quality Assessment(IAQA) as a computer vision
problem. We compare deep Convolutional Neural Networks (CNNs) with Vision Trans-
formers (ViTs) and Convolutional Vision Transformers (ConViTs), and examine which mod-
els best predict 'image quality’ as a binary classification problem.

While CNNS have superseded hand-crafted approaches to feature extraction, achiev-
ing this has required hand-crafting attention mechanisms as high level training policies
on very complex CNN architectures - which are, themselves, time consuming and in-
efficient to train. We therefore produce a side-by-side comparison to assess whether
self-attention can perform well as an IAQA classifier.

We perform training on the AVA Bench-marking dataset and show that in many cases
both ViTs and ConVits outperform CNNs in side-by-side comparisons. Further, while ViTs
and ConVits both require lengthy pre-training on very large datasets, they are excellent
candidates for domain adaptation - often with pre-trained models performing well when
architectural adjustments are made to output layers.

Surprisingly, this requires fewer training epochs than pre-trained CNN models to adapt
to new domains. Further, while CNNs quickly overfit on the AVA Training subset, this is
not the case with transformers. We also show that the conditions that suit each type
of network differ, however, ConVits do not appear to require as many ‘warm-up’ epochs
when being trained using transfer learning as they do in when being initially trained.

We show that while models will train on the AVA benchmarking dataset without pre-
training, that using non pre-trained models does not achieve high training accuracy.
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1 Introduction

1.1 Background

We are of course, supposing for the
present that the questions are of the
kind to which an answer ‘Yes’ or ‘N0’ is
appropriate, rather than questions
such as ‘What do you think of
Picasso?[1]

Alan M. Turing

Image aesthetic assessment as a computational and machine learning task is important,
challenging and fascinating. The application of aesthetics is wide, and encompasses ar-
eas such as cosmetics, calligraphy, and painting alongside beauty prediction of digital
portraits[2] and facial beauty prediction[3]-[5]. Applications within the art domain in-
clude style recognition[6], [7] and aesthetic visual quality of handwriting[&]. All of these
approaches require some form of digital imagery, and this thesis will focus on the Aes-
thetic Quality Assessment of digital images in the form of digital photographs.

Within computer vision, there are sub-domains where aesthetics is a component such as
Image Quality Assessment(IQA)[9]-[14] and Image Restoration, which have used metrics
such as PSNR and SSIM. However, Image Aesthetic Quality Assessment(IAQA) treats aes-
thetic prediction as a target rather than focusing necessarily on individual image prop-
erties. Where IQA and image restoration have focused on restoring objective image dis-
tortions and are aimed at modelling or predicting a physical property such that it can be
removed, IAQA focuses on predicting classes or aesthetics attributes.

While aesthetic is often based on individual subjective perception, it is important to de-
marcate this from objective and empirical study within the field of machine learning and
pattern recognition. Where the focus is on objective ground truth, whether by experts or
aggregated scores, the computer vision task is to best predict ground truth. The percep-
tual element, alongside the potential for ambiguity and lack of consensus on concepts
such 'beauty’ and 'aesthetic appreciation’[15], add to the complexity and the challenge
of IAQA[16] as a machine learning problem. One aspect of this is that it includes human
visual perception, which has been shown within psychological studies to be both con-
tingent upon the target photograph’s context[17], where the order in which images are
viewed effects aesthetic perception, and to differ significantly between subjects[18].



IAQA's reliance upon high-level social concepts[15] is however part of what makes the
field so fascinating; with the potential to further insights into human visual attention,
perception, and cognition’ and continue a valuable tradition of biologically inspired com-
puting[21] that began in the 1950s, in addition of course to IAQA's significant commercial
and practical applications.

Computer vision has made significant gains in tasks such as object recognition, classi-
fication, medical imaging[22]. The problem of 'vision’ is however far from solved; for
example, semantic scene detection remains a challenging area of focus. This is complex
in part because it requires consideration of whether image segmentation or recognition
comes first[23] (a task that can also be a challenge for humans) (see figure 1.1). IAQA is
one such challenging domain application.

(a) Vase Face Figure Ground ambi-(b) An average face with a
guity f [24], [25] Phi mask not fitting the av-
erage face well [5]

Figure 1.1: Examples of Ambiguity for Machines and Humans

Traditional approaches to IQA have aimed at measuring image distortion by degrees[26]
within the wider field of digital image restoration. IQA’s focus on modelling the non-
commutative and non associative process of restoring digital image distortions caused
by the corpuscular nature of light such as diffraction, refraction or image sensor noise
caused during the capture of digital images in low light conditions.[26], [27] have in-
formed approaches to early approaches IAQA. In both IAQA and IQA, traditional com-
puter vision has been superseded by Machine Learning(ML) in many areas, using tech-
niques such as Deep Learning using convolutional neural networks (CNNs) which have
been successfully employed since first used for character recognition[28], [29].

This thesis will examine how these more recent techniques have been applied to chal-
lenging domain application of IAQA, and seek to improve and demonstrate effectiveness
of different deep learning approaches within IAQA.

Wision it might be argued it is a form of perception, property of cognition and intelligence[19] . Pigeons
forinstance have been shown to be remarkable observers of pathology [20] when rewarded appropriately.



1.1.1 The Application Domain

The Oxford English Dictionary(OED) defined 'aesthetics’ as 'Of or relating to the percep-
tion, appreciation, or criticism of that which is beautiful[30]. Aesthetics more widely
includes appreciation of all senses, including touch and olfactory sensation[31], and fur-
ther cognitive activities such as mathematical problem solving which have an element
of reward or pleasure, where we might consider a solution ‘elegant’ or ‘beautiful[32].
Aesthetics, therefore, can be considered a broad application domain that requires nar-
rowing.

Attempts to study aesthetics have been made within psychology (imperial aesthetics)[33],
art criticism, philosophy, and as the subject of enquiry within the field of computer vi-
sion. IAQA, therefore, is a subset at the intersection of computer vision, aesthetics and
image processing, focusing on digital photographic images. This might be considered a
sub-domain within the wider field of visual aesthetics, where quality estimation or rank-
ing is involved, and includes painting, calligraphy, cartoon imagery and sculptures. This
section will provide a high-level overview of these interrelated fields and provide the
framework for formulation IAQA as a computer vision problem.

1.1.2 Aesthetics Philosophy

Philosophy gives the the earliest examples of formal enquiry into aesthetics by Plato[34]
(230-bc) and (1790) in the west by E. Kant and E. Burke [35], [36]. This enquiry has contin-
ued into the 20th century with philosophers such as L. Wittgenstein[37], who, in making
general observations on aesthetic, remarks that enumerable facial expressions can be
highlighted by only subtle changes in four strokes (figure 1.2a) contrasting it with figure
1.2b. Wittgenstein remarks that such squiggles drawn one after the other would be in-
distinguishable; a humorous, insightful remark that demonstrates clearly how aesthetic
consideration is both highly nuanced and complex. One might ask here if this is the case
for machines?

® © O

(a) Faces (b) Squiggle S

Figure 1.2: Left Faces, Right 'Squiggle S' [37]

1.1.3 Empirical Aesthetics

This domain covers a field of study within psychology and neuroscience where percep-
tion is studied using technologies such as eye tracking[18] and leveraging environmental
controls in experiments where subjects rank images. There is some overlap within the
field of IAQA and its dataset, such as the Waterloo IAA[38], where IAQA has used tech-
niques normally applied within psychological experiments?.

2A frequent critique of many IAQA datasets lack of control of ground truth data generation.
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(a) Curve 2D Shape Line (b) Non Curve 2D Shape (c) Curve Couch Design (d) Non-Curved Couch De-
Line sign

Figure 1.3: Examples of Visual preference (a)(c) vs less pleasing (b)(d) [39]

This is a relevant field, as it has provided controls such as screen calibration, image dis-
play, subject demographic, and randomization of stimuli[32], [40], [41]. Empirical aes-
thetics also provides insight into areas such as visual symmetry, which are known to
have also been a subject of computer vision[3], [42], and an understanding of how view-
ers might rank an image.

o1 Jipix!

(a) Random Image (b) Symmetrical Image  (c) Rotational Symmetry Im-
age

Figure 1.4: Examples of images used in psychological experiments showing visual preference for symmetry and complexity [43]

These studies have shown experimentally both that formal rules such as the'golden ratio’
and 'averageness'’ in facial portraits (figure 1.5), symmetry (figure 1.4), complexity[43],
and curve (figure 1.3) are attributes that are associated with aesthetically pleasing design
and images (figure 1.5).

1:1.618

,-

-
1:2

Figure 1.5: Average Composite Face (left), Golden Ratio (Middle Right) [44]

However, this is far from the whole ‘picture’ and it has been shown both in computer
vision [45] and in imperial aesthetics publications alike that attributes such the golden
ratio or rule of thirds in photography[46] and symmetry[40] are not universal aesthetic
attributes and depend on context - this underscores the complex nature inherent within
the domain of aesthetics.

1.1.4 Art Aesthetics

Art aesthetics and criticism include consideration of brush strokes and artist techniques,
alongside the interpretation of images within cultural and critical studies that intersect



with social sciences, literary criticisms and philosophy. Perspectives within art aesthetics
might consider or include Marxist, psychoanalytical, feminist (figure 1.6) and queer (figure
1.70).

The tradition in the 20th century has been to apply intellectual theory that has also been
applied to other art forms, such as film and literature, and is not limited to considerations
of good or bad opinion but rather critical and conceptual analysis using vernacular such
as ‘feminist aesthetics’ or ‘feminist critique’[47] of an artwork, item of popular culture or
an image.

One fascinating feature of 20th century art is the inclusion of critical theory into the art-
work aesthetics itself and ‘aesthetics’ that are ironic or a pastiche of popular culture’s
aesthetics (figure 1.6 shows two renowned and striking examples of this).

Your body &

2 Do women have to be naked to
2 get into the Met. Museum?

V r \ \; .
A e AQ§\|.ess than 5% of the arfists in the Modem

Art Sediions are women, but 85%
of the nudes are female.

GuerriLLaGiris.:

“Sbattleground
(a) (sic.) Untitled (Your Body is a Battleground)3 [48] (b) Do Women Have To Be Naked To Get Into the Met. Museum? [49]

Figure 1.6: Examples of Late 20th century Feminist Artworks

Art aesthetics this are important and relevant in considering the possible applications
of IAQA and given how different models that are trained apparently handle ambiguous
examples and the potential to provide a ‘critical lens’ on areas such as cultural, racial or
gender bias that might be replicated by machines. One might ask here how computer
vision might learn feminist aesthetics?

Much of the focus of IAQA has been on what might fall within extraction of features:
formalist art aesthetics, such as lighting, perspective or particular aesthetic techniques
such as chiaroscuro (using lighter or darker tonal values to make something appear three
dimensional)[24] shown in 1.7.

Another example of formalist aesthetics involves using attributes such as colour har-
mony - or using colours that are equidistant on a colour wheel (figure 1.8) - which po-
sitions discrete colours according to position, following prismatic splitting (figure 1.8a)
(or electromagnetic spectrum) first theorized by Newton red, orange, yellow, green, blue,
indigo, violet.

Many formalist attributes are used in hand crafted IAQA, and a consideration to wider
aesthetics is included as there may be novel applications of computer vision to art criti-
cism. One such high-level example of formal aesthetics is shown in figure 1.9; a focused
example of features in IAQA literature is shown in table 1.1.
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(a) Self Portrait by Artist Robert Map- (b) El Fabula(an Alegory) [51] (c) Salome Receives the Head of
plethorpe [50] John the Baptist [52]

Figure 1.7: Chiaroscuro examples

ont’

(a) Newton's Color Wheel Based on (b) Primary and Secondary Hues in (c) Aesthetics Color Wheel [24]
EMS (Prismatic Splitting) Pigments [24]

Figure 1.8: Examples of Colour

The Elements of Design

(the tools to make art)
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Figure 1.9: Elements of Design [53]

1.1.5 Photo Aesthetics

Photographic aesthetics within the field of IAQA have focused on so-called 'formal photo-
graphic rules’, which overlap with more widely applied aesthetic rules, but have distinct
properties which are a result of physical properties: lens (bokeh, Depth of Field(DOF),
shutter speed), sensor, and light. Within traditional handcrafted approaches, this in-
volved high-level attributes such as simplicity, colourfulness, color combination(harmony),
sharpness, image pattern, and object composition[15], [38], [45], [54]-[56]. These are in-
formed by texts on photography that themselves frequently borrow from formalist art
aesthetics, which have, in turn, been sources from which high-level features are defined.

Others have sought to define more abstract features, such as spatial richness[56] and
similarity measure[15]; aesthetic attributes that are concepts of a hypothetical viewer
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(a) Complimentary Colors(Color (b) Colour Harmony [56] (c) Shutter Speed [56]
Contrast) Yellow/Blue [12]

(d) Rule of thirds [57] (e) Shallow Depth (f) Good Lighting [56]
of Field (Blurring
Background) [12]

Figure 1.10: Examples of Photographic Formal Aesthetics

mapped onto ranking measures. Table 1.1 shows attributes frequently used in IAQA liter-
ature, many of which are defined within photographic texts, photo guides or researchers’
own experience. Itis also clear from, for instance, attributes like good lighting are not nec-
essarily easy to define though they may appear obvious, and that these include detailed
aspects such as chiaroscuro, dynamic range, and contrast.

Further, these attributes are not strictly cumulative and/or necessarily combinatorial -
attributes that may constitute a good photograph for one subject would not necessarily
be effective should the subject be elsewhere. There are numerous examples of this in
the datasets section of the appendix A.0.5.

However, it is also clear that having an intuition as a photographer is part of the aes-
thetic toolkit, and a re-combinatorial approach - using the right effects alongside the
adjustment of camera settings, lense choice - is a part of what makes ‘good photogra-

phy'.

Figure 1.10d bottom clearly has rhythm, colour harmony, composition created by the ob-
ject of the photograph being at the intersection of the golden ratio, the colour of the
leaves, the repetition of trees and it also makes use of perspective - an image figure
1.10f shallow DOF(wide lens iris aperture/low f number) would be not be a useful at-
tribute and would render the bridge out of focus. Attributes such as shallow DOF that in
one context (portraiture or macro photography) are part of highlighting a salient object
that in another (landscape photography) would degrade the image aesthetics quality®.
Many of the low quality images in the qualitative examples of IAQA datasets (section
A.0.5 of the appendix) show images that might otherwise be high quality but the image
has of shallow DOF with a salient object that is out of focus.

4f 64 is a renowned landscape movement which makes use of extremely small apertures-rendering
almost everything in focus to create a painterly quality of image, examples of this can be seen on the
Metropolitan Museum of Art's web-page: https://www.metmuseum.org/toah/hd/64/hd_f64.htm


https://www.metmuseum.org/toah/hd/f64/hd_f64.htm

Example Aesthetic Attributes

Feature(aesthetic Figure Description

Attribute)

Rule of Thirds/ 1.10d Salient or important elements placed on lines of

Object image divided into 3 x 3 grid. Ratio of 1.61803
Composition [58]

Saturation/ Hue 1.10a saturation indicate chromatic purity (emphasis

Saturation of single color value) [15]

Simplicity 1.10a Keeping single subject or saline object well com-
poses and not having too many subjects in
frame.[55]

Color Combination 1.10b Color Distribution of image finding a few domi-
nant colours[55], [56]

Lighting 1.10f lighting contrast between foreground and back-
ground, use of effects such contrast[56], [59]

Sharpness 1.10e Subjectin focus, use of depth of field and lighting

to isolate salient object from background[60]

Image Pattern 1.10d bottom Use of symmetry and texture to crate harmony
and rhythm[60], [61]

Table 1.1: Aesthetic Attributes from IAQA Literature

One further aspect of photo aesthetics that is important to consider is the properties
of the camera, this might include resolution of sensor, bit depth of color, alongside the
sharpness of lens which effects both features such as chromatic aberrations (red, blue
halo at object edge) and resolving power of lenses, many of these properties are inter-
related. For instance small f number (aperture) increase sharpness even for low quality
lenses but also increase DOF. Other aspects include tilt and shift (figure A.2) where a spe-
cialist lens or large format camera might be used in architecture photography to correct
perspective.



1.2 Applications

1.2.1 Commercial Applications and Practical Applications

Applications include image recommendation, photo album optimisation[62] and adver-
tising, alongside image enhancement[63] and on-device real time IAQA. Others have
utilised image captioned ground truth to train models that have then been able to of-
fer advice to photographers, providing feedback on aspects of technique and camera
operation such as,‘a greater depth of field of say f8 would have produced an over all bet-
ter shot’[64], these latter approaches have also made use of attributes’ radar maps[64].
Another related approach is 'best hand shot'[65] which utilises the multi-capture feature
that many smart phones are now equipped with.

(a) Image Before Enhancement En- (b) Image Before Enhancement[66] (c) Image Before Automatic Crop
hancement[63] Enhancement[67]

(d) Image After Enhancement En- (e) Image After Enhancement En- (f) Image After Automatic Crop En-
hancement[63] hancement[66] hancement[67]

Figure 1.11: Image Enhancement Examples From IAQA Literature

Other applications include the selection of product photographs that are most likely to
be of higher quality and hence more attractive to consumers, or of the most appealing
architectural photographs of hotels. One real-world example of this is Idealo[68], who
provide a service and commercial applications of IAQA[63], [69].

(a) On Device Rating[56] (b) Aesthetic Attributes[56] (c) Predicted Attributes Scores (d) Best Handy Shot[65]
(Radar Maps)[64]

Figure 1.12: Application Examples (On Device Rating, and Best Hand Shot)

More widely, there are numerous fascinating examples of computer vision in aesthetics -
such as pose analysis of ancient art, and art restoration and verification where computer
vision is being applied to verify a painting’s authenticity>[70] and in generating novel im-

>https://art-recognition.com/


https://art-recognition.com/

ages® and include computer vision applications of style recognition[71] shown in figures
(1.13a, 1.13b, 1.130).

(a) Original Image [71] (b) Style [71] (c) Style Transfer Image [71]

Figure 1.13: Examples of Style Transfer

®https://www.artbreeder.com/

10


https://www.artbreeder.com/

1.3 Aesthetics: A Computer Vision Problem

Computer vision has focused applications stenography [72], texture analysis,semantic
segmentation[/3], 3D scene reconstruction[/4], super-resolution[/5] and edge detec-
tion[76] as well as more widely in areas such as object recognition, image captioning,
medical imaging. Prior to deep learning approaches, many techniques involved extract-
ing features using Discreet Wavelet Transoms (DWT)[61], [77]-[79] and handcrafted or
combinations of low and high level feature extraction, where support vector machines
(SVMs) are used to enhance for multi-class or object recognition[80], [81].

While many of these methods continue to be researched, more recent approaches use
Deep Learning - such as attention based salience[82], object detection[83]-[85], classifi-
cation [86], and multi-class or active learning[87]-[90].

Aesthetics as computer vision problem is further addressed in the Methodology Chap-
ter 3, and approaches outlined in the Literature Review 2 might be considered to be at
the intersection of empirical study in the aesthetics of digital photographs (DP), Image
Processing (IP), and machine learning (ML).

DP are quantized R2 discrete time images of continuous signal data {a,b} =— {x€Z:
a <x<b}wherea=0.4x 10%and b =0.7x107° frequencies of the electromagnetic
spectrum in continuous time in R3 space. IP is a set of techniques used in processing dig-
ital images; Machine Learning is a wider umbrella term encompassing approaches such
as Deep Learning and Reinforcement Learning (RL). Approaches to deep learning include
Convolutional Neural Networks (CNNs)[28], Generative Adversarial Network (GANs)[91],
Long-Short Term Memory (LSTM)[92] and most recently Vision Transformers (ViTs)[93],
[94]. Each field € {DP,IP,ML} (an illustration of this is shown by the Venn diagram in
figure 1.14) in turn might have further subsets, such as deep learned features as a su-
pervised learning task on a particular subset of DP images, where one type of IP is used
for as part of data augmentation. [95].

Many of the traditional approaches to aesthetics have relied on the extraction of hand-
crafted features, and are what art criticism would define as formalist aesthetics; texts on
formal photography such as [96], are frequently cited in computer vision research[63],
(971, [98].

One clear and obvious drawback of hand-crafted feature extraction approaches, in light
of findings across subdomains of aesthetics (empirical aesthetics, philosophy and art),
which has been noted in many of the computer science publications[12], [44], [99]-[104]
is the not unambiguous in definition(s) of attributes in compounded further by the poten-
tial for ambiguity within GT data. Further, although hand-crafted features have produced
models that have been able to generalise, they have often been weak learners. Irrespec-
tive of recent gains made in computer vision using deep learning, which has come to
dominate[99], it might be argued that these later approaches are better suited to this
type of domain - as features are learned, and therefore do not rely on human defined
categories but rather on how features that best predict ground truth (GT) labels.
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1.3.1 Image Aesthetic Quality Assessment IAQA

One conceptual challenge in defining a domain within aesthetics or vision is the question
of whether aesthetic appreciation is cognitive, a property of stimulus itself, or something
that can be objectively assessed as a quantitative and computational task.

This ambiguity has been highlighted even in early canonical attempts at analysis of aes-
thetics; Kant in 1892, for instance, introduces in his critique of judgement the notion
simultaneously that 'beauty is in the eye of the beholder[105] while judging something
as good - is to 'to make [...] a subjective assessment [of what] he has reason for expecting
a similar delight from everyone’[35]. The tension between these two statements being
an attribute of 'aesthetic’ experience[106].

Notwithstanding these inherent ambiguities which are nontrivial, IAQA has been exten-
sively researched and formulated as a computer vision problem. Addressing the ques-
tion of where IQAQ ‘sits’, however, is important in dealing conceptual ambiguity. The
importance of clarifying IAQA is fourfold:

Enables formulating a problem by understanding of what tools are appropriately lever-
aged from machine learning and pattern recognition;

Disambiguates |IAQA within nomenclature and sub/super domains where there there
is potential for cross over and conceptual confusion;

Identification of opportunities for real world application, learning for other domains
and clearly;

Understanding overall purpose and value.

12



IAQA definition

Here the term IAQA is used to disambiguate the field of enquiry, as a term most fre-
quently used in literary criticism and to disambiguate from from fields such as Image
Restoration or IQA.

Both Image Processing and Computer Vi-
sion are included as separate fields, as
Inter-Relation Venn Digram of IAQA Domain there are applications for each within the

wider domain of aesthetics - for exam-
ple, Wavelet Entropy for painting crack
identification does not necessarily consti-
tute learning. Here, therefore, it is con-
sidered a qualifying feature if IAQA is an
application of both Image Processing and
Computer vision in the domain of aesthet-
ics[107].

Wider Aesthetics

Image Processing

Attention Mechanisms

Figure 1.14: Venn diagram Data sets Reviewed in literature reviews Within the domain of IAQA, there remains

a significant gap between hand-crafted or

deep learning models in predicting how a

population of human assessors would rate an image. Further, it is notable that the

largest recent gains in predictive accuracy and ability to generalise have come from mod-
els that combine deep learning with attention mechanisms.

Attention maps, for example, have been framed as optimisation models to boost a model's
ability to learn, to use semantic information, identify areas of focus, or using models
trained on salient object detection to inform attention patch centroids.

1.3.2 Challenges for IAQA:

Some of the technical challenges that have been demonstrated to hinder a model's ability
to learn are also useful areas for domains more widely. For example image composition
is a feature which is challenging to learn where input images and corresponding feature
maps of a convolution neural network are necessarily square. These are inherent and no
trivial examples of how a CNN might handle real world data, which is potentially messy,
ambiguous, and degraded or noisy signal data.

GT is often created by a community of human participants, some of whom may be hobby
photographers and others professional. It is unclear whether these rules have been rig-
orously followed in all cases. Further, in classification tasks or object recognition salience
detection, the levels of semantic granularity applied is not so well-defined for IAQA.

One area of complexity is the clear interplay between context and what is an aesthetic
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attribute of an image - for instance, a medical image may be considered aesthetically
beautiful, or indeed an image from the Oxford flower dataset, and if entered into a com-
petition may score highly.

This may be, for instance, due to the subject matter having a high degree of visual interest
that subjectively piques the interest of a viewer with attributes such as visual symmetry.
It is clear that both image symmetry and symmetry of a salient object itself provide both
potential attributes that can be considered aesthetically high value.

1.3.3 Challenges/Problem Definition

Advances in Al in the last decade have seen super-human performance in areas such as
deep reinforcement learning and domains with high dimensional search spaces, such
as protein folding[108] and the game of Go[109]) with its 10!7" possible board combi-
nations. Digital images provide one such example of high dimensional spaces, where
an 8-bit 16 x 16 Red Green Blue (RGB) channel image has x € Z x 2816410 possible pixel
combinations.

Within the wider field of computer vision, the use of deep learning techniques such as
convolutional neural networks and transformers in Natural Language Processing (NLP)
(and latterly, transformers for computer vision tasks) has resulted in performance accu-
racy that has increased year on year[110]-[113].

However, the most recent research papers published on IAQA in 2021 have not achieved
accurate scores above 85% on benchmark datasets. Many of the approaches that have
improved CNNs' ability to converge faster and generalise, better such as deeper net-
works[111], adding residual layers[1714], and improving CNN optimisation algorithms[115]
have seen incremental minor improvements to IAQA.

Significant improvements have generally required attention mechanisms that introduce
high-level spatial inductive biases during the training of combined widening or parallel
multi-column networks. Many of these represent a replacement of hand-crafted feature
extraction, with crafted policies/meta heuristic inductive biases on multi column archi-
tectures.

With recent metrics for classification CIFAR10[94] >99% accuracy and CIFAR 100[116]
96.08%, image-net 90.88%][117]. Notably, [94], [117] are both convolution transformer
hybrid (ConViT) models. While [116] is not a ViT-hybrid, it is only marginally better in
performance than its next nearest neighbour [94]. These metrics are so accurate that it
would be important to ask if an individual human subject would be able to perform so
well. Many of these improvements remain within narrower applications, where CNN's
have already achieved high levels of accuracy and have remained dominant[29], [1714],

(118l

ViTs, to our knowledge, have not been used for IAQA, have traditionally required huge
datasets[119]-[121], and only generalise well on datasets (14M-300M) images[94].
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Datasets of this size do not exist for IAQA. Recent approaches using transfer learning
are producing data efficient transformers[119], however it is unclear, when compared
with conventional approaches on smaller tasks and on new domains, whether ViTs or
ConViT’s outperform CNNs.

Here, we will compare and contrast the best performing CNNs with ViTs and ConViTs, and
evaluate performance within the IAQA domain with binary (high, low) quality images, and
attempt to predict how a compute of online voters would score an image.

1.4 Aims and Objectives

The objective of the dissertation project outlined here is to review IAQA using the AVA
benchmarking dataset as a binary classification problem. This will be outlined within
the context of wider datasets and implementation challenges, and the training of state
of the art models using domain adaptation vision transformers and will outline what
makes IAQA important.

Key aims and objectives are:
1. Aims: The aims of a this dissertation project are:
*+ To build an understanding of previous computer vision research in the do-
main of IAQA;

+ To compare pre-existing CNN architectures with Vision Transformers (ViTs)
and ConViTs;

+ To further knowledge on what state of the art models can contributions in
the domain of IAQA;

+ To train, adapt and testexisting models using available code;
+ To identify areas for future development;

« To generate new learning by training models that have not yet been used
within IAQA such as Vision Transformers.

2. Objectives:
+ To evaluate different ViT, ConViT and CNN models;

« To improve models by adjusting hyper perimeters and selection of appropri-
ate data augmentation;

+ To address challenges inherent withing the data such as class imbalance;

+ To report metrics on architecture performance of base-line and state of the
art approaches;

+ To produce trained models that can be used for inference on unseen data;

+ To provide provide analysis of models using both quantitative and qualitative
results;

+ To provide analysis and rational for the selection of models;
*+ To report results reproduced in by existing research withing the domain of
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IAQA.

1.5 Contributions

The contributions made here are chiefly of a novel approach to IAQA using ViTs and
ConViTs (the first application of ViTs and ConViTs) to the field of IAQA. We demonstrate
this contribution by:

1. Comparing side by side with CNNs;

2. Show both quantitative and qualitative results of inference;

3. Conducting analyse of how both transfer learning can be used with minimal addi-
tional training.

Within literature review we conduct a review of datasets on IAQA and conduct analysis
of dataset sizes and type and produce a proposed data dictionary which would be us
full for further IAQA research, we also aggregate dataset size and type which is currently
missing from IAQA literature and hope that this will be useful for further research within
IAQA.

We also web scrape and produce a data dictionary of all 320k images available on dpchal-
lenge.com which would facilitate further research including multimodal research an make
use of the rich comments data that is available on dp.challange.com.

We also conduct analyse of Ava Benchmark Dataset and show that their is a statistically
significant relationship between the competition and mean observed score (MOS) where
competition number increases monotonically with time.

1.6 Thesis Organisation

The thesis introduction (chapter 1) has provided a high-level overview of the IAQA do-
main and potential applications. It will also introduce the current context, challenges
and problems alongside providing context on aesthetics.

The literature review (chapter 2) will provide context on both datasets and provide in-
sights into how different publications have address the challenges of CV in IAQA,; further
it will review available data an provide justification for using the AVA Benchmark dataset
based based on available literature and also outline evaluation metrics used.

Research methodology (chapter 3) will outline the approach taken to data handling, the
image processing pipeline, and to the training of models. Results and discussion (chapter
4) will provide both qualitative and qualitative outcomes of the various CNNs and ViTs
that were trained.

Chapter 5 provides future recommendations and outlines major contributions and the
significance of the findings.
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1. Key Aspects: within 1 Introduction.
* Introduce the application domain of IAQA aesthetics;

*+ Provide an initial outline of the problem and state of the art metrics(SoTA) on
image classification;

+ provide a (lens) through which to read the following chapters.

2. Key Aspects: within 2 Literature Review.
+ A comprehensive overview of IAQA literature and analysis on different ap-
proaches taken;

+ Evaluation of what was successful and what any drawbacks and pitfalls were
within the approaches taken so far;

* Provide insights into how findings here can contribute to learning beyond
simply attempting to supersede state of the art accuracy on the AVA bench-
marking dataset.

3. Key Aspects: within 3 Research Methodology.
+ Vision Transformers overview and adaptation and outline models used and
under what settings;

+ Address challenges posed by the data itself such as class imbalance;
+ Improve model performance using novel data augmentation techniques;

4. Key Aspects: within 4 Results and Discussion.
+ Evaluate wider significance of research approaches including consideration
of cognition and where IAQA might contribute to wider understanding within
the field of computer vision;

+ Evaluation of what was successful and what any drawbacks and pitfalls where
within the approaches to IAQA thus far taken;

*+ Provide analysis and rational for selection of models used.

5. Key Aspects: within 5 Conclusion .
+ Explore potential future research opportunities;

+ Outline contribution how this dissertation has contributed to existing knowl-
edge;

+ Identify potential novel applications, significance and importance of IAQA and
computer vision research.

The problem statement of binary classification on the AVA benchmarking dataset is out-
lined in the introduction and referenced, built on, and evaluated throughout the disser-
tation.
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2 Literature Review

This section covers the baseline (section 2.1.4) and state of the art models (section 2.1.3)
used within IAQA literature makes a definition of the data used and reviews various
Hand-Crafted (HC) as well as deep learning approaches to IAQA. Within deep learning
we also include (Vision Transformers) ViTs and (Convolutional Vision Transformers) Con-
Vits and examine different attention mechanism used in DNNs (section 2.1.3). In (section
2.1.6) we make a case for deep learning over HC feature extraction and the reason for
using the Aesthetic Visual Analysis (AVA) benchmarking dataset. We do this through con-
ducting systematic review of datasets and conducting meta analysis of literature through
the 7ense’ of datasets used in IAQA literature and descriptive as well as parametric anal-
ysis of the AVA dataset meta data (section 2.2). Finally we outline the evaluation metrics
used for IAQA as a binary classification problem in section 2.3.

2.1 Related Work (Image Aesthetic Quality Assessment)

Image Aesthetic Quality Assessment (IAQA)' is a highly nuanced and challenging area,
which requires care and consideration at several layers of detail.

At a high level within the literature on IAQA, there has been a shift from HC to deep
features, in addition to the consideration of either visual attention mechanisms or model
architectures. This is reflective of the wider trend in computer vision. Further to what
is outlined in the introduction, here we narrow the focus to intra-IAQA literature, rather
than interrelated sub-fields or domains that focus on painting or calligraphy[7], [£] etc.

There are, to date, four reviews (experimental and literature) on IAQA[16], [61], [123],
[124]. These provide an initial high-level view into IAQA, and cover approaches both
HC and many - but not all - of the datasets used in IAQA research publications. The
prevalence of citation and review of various IAQA datasets is shown in the Venn diagram
(figure 2.7).

2.1.1 Baseline

Initial approaches taken to HC features Trainee Classifier on Support Vector Machines
(SVM) or Gaussian Mixture Models: Here, we consider approaches that have used deep
learning, alongside performance within IAQA rather than classification more widely.

Deep learning models have generally been binary classification, where MOS is thresh-
olded < 5=0and > 5 =1 to produce binary ground truth of € {0,1} =€ {bad,good}
image quality.

Twithin the literature on image quality, some publications - which are clearly within the domain of
IAQA - refer to this simply as Quality Assessment (QA)[122]; others heavily blur these categories[61]. For
disambiguation, here it is referred to as IAQA so as to delineate the field from other domains - such as
image restoration - clearly.
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As has already been outlined, some form of attention mechanism, paralleling, or patch-
ing has been used to improve results on various vanilla CNNs that have been used for
IAQA as an image classification problem:

Alexnet [114] by [125];

VGG16 [111] by [59], [62], [123], [125]-[129];

Inception Nets [130] by [63], [131];

GoogleNet [112] by [64], [132];

DenseNet [133] by [131], [134];

MobileNet [135] by [63];

ResNets [118] € {18,34,50,101,152} by [59], [125], [129], [131], [136], [137].

These report an overall accuracy of VGG with AVA zero padded to square of 72.9%[126],
which is significantly less than the performance of ResNet152, reproduced here at 74.1%.
Further, when comparing hybrid vision transformers ConViTs, many publications take
ResNet architecture as baseline[121], [138], [139], with more recent publications using
ResNet152[64]. Here, training ResNet € {18,50, 152} to produce baseline metrics.

Figure 2.1 shows one residual block, of which 18 make up the smaller ResNet figure 2.2.
These networks perform well, and are arguably more competitively efficient with fewer
floating point operations (FLOPS). Each block has two weight layers, allowing for an x or
identity layer to be concatenated back (a technique for countering vanishing gradients/-
keeping residual values). All of these networks are trained as baselines without attention
mechanisms, but do not require consideration as far as feature hierarchy as this is a built
in feature of CNNs[113]. Generally within IAQA, where an architecture is used to provide
baseline metric, itis also used within a model as a backbone - although, this is not always
the case. Authors have taken various approaches to copping, such as canter copping or
warping to dimension 3 x 224 x 224.

y=f(x{Wi})+x 2.1)

Where the output of one residual block x is input W; are weights of i;4 layer in the residual
block.

2.1.2 Digital Images

All of the IAQA techniques reviewed are, by necessity, digital images produced using the
sensor arrays of commercially available digital cameras (whose sensors are sensitive to
light within an extremely narrow section of the electromagnetic spectrum of 0.4 x 10~*
(violet)and 0.7 x 10~° (red)) and digital images discrete quantized representations 0-255
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Figure 2.1: ResNet Block [113]
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Figure 2.2: VGG-19 left, 34 Layer plain middle, ResNet 18 (19 blocks) right [118]

20



Figure 2.3: Aggregation based architectures for IAQA [129]

or 0 < (2%) — 1 of this spectrum.

Colour digital images are captured as three channels in an RGB image; traditional tech-
nique applies functions across an image array f(x,y) where x and y are spatial coordi-
nates of a pixel array.

2.1.3 State of the Art (SoTA)

Three main and closely interrelated features exist for deep learning based models, multi
column, patching of image, and attention. For clarity and focus, here we evaluate models
that are compared on the AVA benchmark dataset, as it has become the convention
within IAQA to benchmark on AVA dataset.

Multi Column

Almost all models have used some form of multi column image classification network as
a backbone; the performance accuracy of each is shown in 2.1.

Even where the multi patch is not apparent in name, this is embedded in the approach in
some way. Early models, such asrapid [140], almost replicate the extraction features and
constitute HC thinking, but as a policy for a paralleled CNN, where the focus has been
to train to classify based only on 'textures’ (and then implement a voting system[140],
[141]), the most basic of these simply bolt on an SVM classifier to label parts of the dataset
€ {scene,ob ject ,texture} and then pass these to a separate forward feed network. [125],
[129] have separated learning tasks where semantic information is learned and use this
alongside aesthetic to enhance predictive ability by concatenating weights back using a
Bayesian probability graph at the end of the model.

Others have defined columns that train on spatially local patches that are selected via an
attention mechanism, frame patches as an optimisation system, or they create a multi-
patch aggregation system [101], [129]. The most complex of these are similar to poli-
cies[142] within reinforcement learning (RL) and [129] learning optimisation algorithm.
For instance, this even appears to obey a Markovian property - further underscoring the
parallel. However, authors do not themselves make this observation or frame learning
in this way - perhaps it would have enriched their work if they had.
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Attention mechanisms

All of the state of the art models considered here are produced using attention mech-
anism or multi layer architectures that have been used to successfully improve classifi-
cation accuracy, and produce models that perform better than vanilla networks on the
AVA test set.

Some of these approaches, such as A-Lamp [126], use adaptive patch selection based on
the most informative patches, using graph based salience detection, to select multiple
patches shown in figure 2.4a.

Various iterations of this have been the rule within recent IAQA literature, and these have
been to solve a range of technical challenges, which fall into the categories of spatial com
positional, spatial intentional and semantic.

Spatially based attention is developed as a learning policy by [129], who employs an op-
timisation strategy to maximise training accuracy by selecting new patches and avoiding
bounding box coordinates of the previous patch for n attempts. Other attempts have
sought to create a policy where a model can focus on aesthetically similar images [65].

Some have cropped salient patches a without any other transforms and built an at-
tribute relation graph [126]. The most recent and sophisticated of these create and
utilise aesthetic related attributes and spatially related regions[136] or use multi-modal
approaches[99] that leverage comments and information to combine self attention with
attention based on LSTM trained on said comments.

The latter two approaches mark the the most significant improvements in overall accu-
racy in the AVA bench marking, and represent a leap of significant margin. One drawback
of these approaches is that they do not necessarily lend themselves to easy application,
and are difficult to validate. Further, each approach somewhat reinvents the wheel in
terms of attention mechanisms; none of these approaches have used a vision trans-
former or hybrid Convolutional Vision Transformer (CvT) network.

Image Patching

The mean image size of the AVA dataset is 629 x 497 pixels with a maximum of 8007 pix-
els. The convention in almost all of the approaches sub-sample, down-sample, or crop
images as part of data augmentation. This is often the first process in image augmen-
tation; image patches are in most cases 3 x 224 x 224, however, in some cases images
have been warped to square before patching [136] and others have been zero-padded
to preserve composition.

2.1.4 Hand-Crafted Features Genealogy

The approaches within IAQA fall into two main categories: hand-crafted (HC) and so-
called deep features. HC features are extracted at both /o and high level and are ex-
tracted by traditional approaches to digital image processing[26].
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(a) Patching Example From Hand-Crafted (c) Patches Taken From AVA Dataset Based
Features [143] (b) A-Lamp Multi Patch Network [126] on Saliency Graph [126]
Figure 2.4: Patching Examples from Hand-Crafted [144] and Deep Features [126]
*State of Art Models and Metrics on AVA Dataset*
Year | Model Reported Acc. | Reproduced Acc. Approach Backbone
2014 RAPID DCNN[140] 75.4 - Double column CNN (tex- AlexNet
ture)
2015 DMA-Net [101] 75.4 - Multi-column Alexnet
2016 A&C CNN[145] 74.5 - Scene Object Texture (multi Rapid CNN[140]
attr./col.)
2016 MNA-DCN[127] 771 - Adaptive Spatial Pooling VGG-16
2016 MNA-CNN-Scene[127] 774 - Multi-Column (spatial) VGG16
2016 BDN[141] 78.9 - Multi column (directed aug- Custom Auto Encoder
mentation)
2016 MTCNN [125] 79.1 - Baysian Multi Task AlexNet, VWG Net, ResNet
2017 New-MP-Net[126] 81.8 - Multi-Patch VGG-16
2017 MultiGap[132] 82.27 - Multi pooled with text aug- GoogleNet
mentation
2017 A-Lampl[126] 82.5 - Adaptive-Multi patch (spa- VGG16
tial)
2018 NIMA [63] 81.51 77.36 Reproduces MOS Distribu- Inception-v2, MobileNet
tion
2018 MPADA[129] 83.03 79.1 Attention Based Multy-Patch Resnet18
2019 MLSP[128] 81.72 81.7 Double column CNN VGG-16
2020 AFDC[137] 83.2 - Muli-column adaptive mini- ResNet50, VGG16
patch
2020 FCN-A-G[ 1 83.6 - Region Graph Convolution Resnet101 FCN, VGG-16, DenseNet-121
(fully conv.)
2020 PAIAA[146] 83.7 - Siamese Multi-column Densnet121, Inception-V3
2020 MSCAN [99] 86.66 - Multi Modal Self colab. attnt. VGG16
2021 HLA-GCN[136] 84.6 - Layout-Aware Graph CNN Resnet-50, Resnet-101

Table 2.1: State of The Art Metrics (overall accuracy)

2.1.5 Feature Extraction

Early approaches to IAQA combined 'low-level features and processes, such as wavelet
transforms, to obtain image texture to 'extract’ information, or applied coefficients re-
cursively to obtain edge information, or applied some coefficient across an image to
compute blurriness.

The trend in the use of HC features seems to be from multiple complex and individually
defined functions, for example [15] and [147], (early examples) both of whom extract 56
and 15 individual features respectively and later examples [152] extract only three but
apply a more complex learning algorithm.

Global/Local

Almost all approaches use both global features such as texture, and local features such
as salient objects. There is some ambiguity in the literature about what constitutes ‘local’.
Examples of a low-level features are sub-banding in Wavelet, convolving across images,
where there is therefor some spatial locality or granularity to the extracted feature.
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] or blurriness[

Convolutionally or Conventionally Derived Features

Figure2.5 shows a typical HC feature extract-on and SVM training pipeline.

Date Technique Feature Type Extracted (imaging Feature Levels % Dataset Metric Score
process)
2004 Ada-Boost, Real- Texture, Shape, Color, Band Diff. color H/L Bt Linear Corr. 84.7%
AdaBoost (SVM, Energy histogram, color mo-
Bayesian) Classi- ment, lab coherence,
fier[147] HSV Coherence, DFT
Moment,DCT mo-
ment, Wavelet, hist €
{Sobele, Laplace,Canny},
2006 SVM Binary Classifica- Texture, Familiarity, Wavelet Based and 56 H/L P.Net ACC 70.12%
tion[15] Size, Depth of field subset functions
2006 Naive Bayes class [12] Glob  Edge  Distri- Laplace Filter, KNN, H/L DPC ACC 72%
bution, Color Dist., 20bin Histogram,
Lo-level Contrast, Fourier Transform
Brightness indicator
2008 SVM, Gentle  AD- clarity, contrast, light- Histogram, blur- H/L DPC max AUC 93%
ABoost, Bayes Classi- ing, simplicity, compo- ring kernel,
fiers[148] sition geometry, color f(Hue x Bri. x Sat.)
harmony
2009 SVM Classifier[149] salient object, subject Saliency Map H/L P.Net 5CV-ACC 78.8
background
2011 SVM Classifier [150] Colour, DOF, Illlumina- Color spatial dist., H/L DPC/Flkr. ROC -
tion of sky multi scale contrast,
Wavelet Energy, Haar
Features, Spatial
Pyramid Shape
2012 SVM Classifier[151] Layout, Composition, Hist, FFT, kNN(color) H/L CUHK mean ACC 86%
Texture, color
2013 SVM Classifier[55] (fea- Geometric  composi- Color  harmony f, H/L CUHKPQ max AUC < 80%
ture prediction) tion, Complexity, DOF, Orientation f, Salience
Hue Composition, map, Kernel Blurring
Blur, Brightness
2015 Bayesian Network 17 High level SSIM, SIFT, HOG G DPC/PNet ACC 727
Support Vector Re-
gression (SVR)[152]
2015 SVM Classifier [54] Proposed Simplic- Histogram Wavelet co- H/L CUHK-PQ/AVA ACC 77.1%
ity, Colorfulness, efficients, Euclid dis-
Sharpness, Pattern, tance, Color histogram
Composition
2016 SVM[153] Aesthetic Class mulitmodal,Structural H DS2 ACC 78.42
Features, Local Vision
features,  Functional
purpose
% High(H) Low(L) Features, T Bespoke
Table 2.2: Approaches to Feature Extraction
Pipeline

Many of the features are highly complex functions that have relied on the knowledge of
signal processing and making use of Fourier spectrum transforms[
are more simple histogram calculations (where pixel values are binned into hues) to cal-
culate color harmony.

], as well as other

Many of the HC feature extraction approaches reviewed here grouped various features
into categories or types such as composition[
design is that of crafting, using engineering skill and domain knowledge to select the
design features that correlate with image quality.

]. Extraction in the

Approaches, such as convolution operations, which were formerly a mode of implement-
ing a process of applying a predefined coefficient, have shifted to become fundamental
and dominant attributes of deep learning for computer vision.
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Figure 2.5: Hand-crafted feature extraction pipeline [54]

Deep learning inverts this, making the convolution operator central and neglecting such
aspects as high or low-level features, domain expertise, or fundamental understanding
of physical properties, which image processing requires. Within this, it is interesting to
note that more recent HC feature driven approaches tend to favour simple features and
complex image categories[54], [152], perhaps in response to deep learning’'s dominance?

Further, of the HC approaches comprehensively reviewed and shown in Table 2.2 only
one compared results with the AVA dataset [54] where side-by-side accuracy is 0.77% on
a subset of only top and bottom 10%(score 1 and score 10) quality images(ignoring 80%)
of data including most ambiguous images. The most accurate binary classification HC
approaches were trained on Chinese Hong Kong University-Picture Quality (CUHK-PQ)
dataset[151]. This dataset is heavily annotated, and has had expert input in rating high
and low quality, in addition to being much smaller. All approaches have performed well
on this dataset of professional images.

2.1.6 A Case for Deep Learning

There is clearly a great deal of interlinking between categories, such as object emphasis,
the 'rule of thirds', and shallow DOF, such that a point of focus or object emphasis might
be achieved through rule of thirds or shallow depth of field which are categories defined,
for example, in the AADB (Aesthetics Attributes Data Base) ( section A.0.5 figure A.3) with
GT labels and HC features. Even 8 HC features can resultin a great deal of complexity and
ambiguity - not withstanding the high degree of human interpret ability of such concept
as a'balanced element.

This process as has a high-branching factory and (}) = #'k), possible subsets (}) where

n—

nisthe number of features n and kis number definable or possible features feature space
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Figure 2.6: 4 Possible configurations of inter-dependant features within sample space of 8 possible features

that constitute a high quality image. In a search space of x € Z x 28" this is clearly a
high number.

This has the drawback of reliance on human pattern recognition and human defined
features, to which machine learning is then applied. In removing the need to define
features by hand a priori, deep learning represents a paradigm shift and has several
advantages for the IAQA domain:
« Removal of human bias from feature definition, where definitions within aesthetics
remain inherently ambiguous;

+ Potential ability to generalise better;
+ Finding patterns in image data that humans would not;
* Models can be used to predict image quality of new images easily.

However, while the techniques employed on smaller datasets, such as AADB, may gen-
eralise less well on unseen data, HC approaches are appropriate for generating learning
from a smaller databases. And approaches that combine both, such as [59], provide
valuable insights for later analysis. These earlier forays into IAQA should not be disre-
garded.
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2.2 Related Data sets

This section will provide an overview of the different datasets that have been used for
IAQA. The purpose of this is to provide further detail, outline some of the inherent chal-
lenges, such as class balance within, and how to formulate a problem in such a way as
to be able to effectively train and measure against benchmarks, and to illustrate the his-
tory and development of the field and draw out how new learning has been generated
in previous work.

Within the literature that surveys the IAQA
domain, there are 15 datatsets (shown

IAQA Datasets In Reviews in Table 2.3) that are reviewed in some
= 5. Kanwal et al capacity, and have had publications as-
[0 H. Yang etal. . .
¥ e cta, sociated with them. There are also a
D. Spathis

. number of publications that have formed
iccd w0 their own bespoke datasets, or which are
° subsets of existing dataset. In IAQA Re-
views [16], [61], [123], [124], there are 12
datasets covered. IAQA reviews consis-
o tently cover AVA and DPChallenge, how-
' ever a significant number of datasets are
only mentioned by a single source see 2.7,

this is reflective of wider IAQA research.

Photo Data DPChallenge ALIPR
AVA
Photo.net

Although their are many IAQA datasets,it
is clear from the variability both in overall
size and type of annotation that, while benchmarking datasets in other areas of com-
puter vision, such as image classification (Cifar € {10, 1000}[154], [155], ImageNet[156]
€ {1K,21K} ), IAQA datasets are less well defined and readily available. Within this, sev-
eral subset dataset have been formed to address challenges such a minority class or
sparsity of a super set have been compiled.

Figure 2.7: Venn diagram Datasets Reviewed in Literature Reviews

*Image Aesthetic Quality Assessment Data Sets*

Name Size(n images) Classes Year Additional source
AADB[59] 10,000 2 2017 12 subsets Flk.
ARODI[65] 304,000 2 2018 Flk.
ALIPR[157] 13,010 10 2018 sentiment Flk.

AVA[98] 255,530 10,2 2012 discretized DPC
CUHK-PQ[55] 17,690 2 2013 7 sub-cats DPC
DPChallenge[157] 16,509 10 2008 DPC
FCDB[158] 4135 oo 2017 cropping Flk.
Flikr[122], [159] 80000 2 2017 geo-tagged Flk
Flickr AES [160] 40000 2 2012 Flk.
IAD[161] 1,500,000 2 2014 Multi
IDEA[162] 9191 10 2020 ballanced DPC
PCCD[122] 4135 7 2017 Bespoke
PD*[56] 1051 2 2013 CUHK-PK
Photo.net[15] 3581 7.2 2010 P.net
Waterloo IAA[38] 1000 7 2017 discretized P.net

Table 2.3: IAQA DATASETS

Figure 2.7 shows only three datasets of literature reviewers that are explicitly covered by
in all four IAQA review publications( AVA, DPChallenge, and Photo.Net). The AVA Datasets

27



is a super set containing DPChallenge images and is clearly central to the IAQA domain.

IAQA ground truth scores are described through the literature as a distribution MOS
(Mean Observed Score). Some datasets have fewer ground truth voters - 28 votes per
image photo.net [98], [163] and others have many raters from a single online community
and have 210 per image (AVA); some are rated using a paid for service such as Amazon
Mechanical Turk(AMT), or by specialist highly controlled informants where screen and
demographic information are recorded in addition to image rating.

Dataset sizes range from 1100[38] Waterloo IAA to 1.4 million[161] images (IAD). The
mean dataset size overview is 152k images. Figure 2.8 shows a plot of the dataset against
the year of associated publication, and while there does appear to be small positive
correlation, there is also an increasing degree of variability in dataset size, with both
the smallest and largest datasets being first associated with publications only two years
apart. Further, this divergence seems to increase with time. While available data in other

IAQA Datasets Scatter

AROD

IAD

AVA

FCDB

Photo.net

14 - Photo Database

CUHK-PQ

Flickr

IAD
P

PCCD AROD
Flickr A .
Waterloo IAA
DPChallenge
AADB Flickr
. =
Flickr_AES
Ds2 . Flickr_AES
IDEA D Flickr ~

-
~

-
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- g —

log data set size

DS2 R kIDEA

Photo.net . —"CCP
e
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PRCC 0.17 p value 0.53

Figure 2.8: Dataset Size and Year of Publication Plot

areas of computer vision appears to have increased with time, this is not the case for
IAQA, where even very recent publications propose novel datasets such WaterloolAA[62].
There is no evidence to reject a null hypothesis that datasets do not increase over time.

The MOS distribution of IAQA datasets frequently appears Gaussian[16], [63], [98], [157].
AVA is the most normally distributed of these[98], where a Gaussian probability density

function is given by:
1 1 (x—u\*
= € —= 2.2
f(x)627rXp<2<G)> (2.2)




Where o is standard deviation and u is mean MOS. The AVA dataset has the most nor-
mally distributed dataset of any available IAQA dataset to date[98], and has more than
300[164] associated publications. This is significant in particular for the AVA dataset,
where the mean number of votes for each image = 210. This can be taken as a reliable
ground truth value, where the probability of an image being scored on some scale is
greatest at its mean and enables the exclusion of relatively few images as outliers from
a normal distribution.

Further, it is significant that within this AVA Database of ~ 255k images, only a very small
number are excluded as outliers, where an outlier is 4, which, while not in itself a test
for a normal distribution, shows the normal test for an outlier is £20.

This is consistent with the notion of so called vox populi or 'wisdom of crowds’ and was
initially researched and coined by F. GALTON[165] in his significant demonstration that
mean estimated values of crowds were frequently within 4-3.1% of ground truth (GT)?.

This significant finding provides a sound reasoning for aggregating crowd sourced scores
as a measure of actual image accuracy. One aspect that is not taken into consideration
with approximating GT, however, is online community bias, and one point of critique of
the AVA dataset is that individual users are not identified and it is further not possible
identify how individual users vote over time across different images, or conversely how
an online community might vote for different images of the same user.

Classification tasks, which many IQAQ publications employ as routine throughout the
literature, compute MOS of each image and then threshold this into usually good or bad
image quality categories. This, however, results in class imbalance with the low category
as a minority class. The practice of computing MOS (see eq. 3.6) emerged in IQA where
HC and traditional computer vision approaches such as[166] were employed as proxies
for GT.

Figure 2.9, left, overlays plots of gaussian distribution and the AVA dataset (light blue).
The line’s Probability Density Function (PDF) of a gaussian distribution e.q. 2.2 (red) and
a computed PDF mapped to AVA MOS scores showing a slight positive skew. The main
deviation from this is in values around the mean (note histogram bars above blue PDF).

One potential source of error aggregating human ratings is that it is not possible to rate
0, butitis possible to rate an image at 10. This may account for some psychological bias
when rating images . Figure 2.9 right appears corroborate this, with the positive scores
outnumbering the negative scores and also showing less normalcy of distribution. Figure
2.10 shows that as the number of votes increases, the average score appears to increase
with it.

Figure 2.10 left shows both class imbalance (greater high than low) and an apparent
increasing proportion of positive score with time. While time is not recorded, with Chal-
lenge ID (which increases monotonically) each challenge is opened and closed for a dis-

2Frances Galton would likely not have used the term ground truth
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crete time period. Therefore, it can be shown that there is a positive correlation with
change in AT 2.10 right with Spearman’s Rank Correlation Coefficient (SRCC) of 0.34 and
p value of 3.36 x 10%° (this is almost certainly significant).

Accounting for this could take a variety of hypotheses, such as a developing online com-
munity within dp.challenge.com. It is certainly clear from reading the comments on
dp.challenge.com that there is an apparent social network with many members being
persistent - this positive drift could be as a result of cognitive bias?

While some datasets, such as AVA, consist of 250k images (which may have been con-
sidered large at its inception), when compared with domains such as object recognition
where models can be trained on datasets such as Image-Net (which contains 15 million
images[167]) the available datasets for IAQA remain relatively small. Within the wider
field of IAQA, which includes moving images, quality assessment, and fascinating areas
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such as calligraphy.

Further, it is important to make a distinction between the field of image quality assess-
ment (IQA) where benchmarking datasets such as LIVE IQA[168] represent images that
have been degraded by artificial noise and are used as benchmarks for the sub-field of
image restoration within computer vision.

2.3 Evaluation Metrics

Almost all review approaches to IAQA are binary classification, with few treating as a ten
class (reproducing probability distribution of images).

For classification accuracy, balanced accuracy, and F1 score are reported within the lit-
erature; ‘accuracy’ is the most frequently used metric in IAQA literature[65], [99], [125],
[126], [137], [140]. Much less frequent is balanced accuracy[123] and F1 score by [126],
[169]. Many approaches use both regression and classification.

Accuracy

'"Accuracy’is a measure widely used to evaluate model performance in classification tasks,
on both evaluation and test sets.

Accuracy = TP+TN (2.3)
YT TPYTN+FP+FN '

Balanced Accuracy

This metricis particularly important in evaluation during the training and testing of mod-
elswhere thereis a classimbalance, which is a significant attribute of many IAQA datasets.

Balanced accuracy in the binary® case used within IAQA is given by computing the arith-
metic mean of sensitivity and specificity False Positive Rate (FPR)(eq.2.6) (where sensitiv-
ity or true positive rate (TPR) (eq.2.5):

FPR+TPR
Balanced = ; (2.4)
N
Where N, is the number of classes, TPR is given by:
. TP
T PR = Sensitivity = ———— (2.5)
TP+FN
and FPR is given by:
FPR =1 —Specificit i (2.6)
= 1—Specificity = ——— .
P YT IN+FP

3for non binary cases, class weights must be computed
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Other approaches to addressing class imbalance during training and evaluation are dis-
cussed below in the Methodology section.

F1

F1 score produces the harmonic mean of precision (eq. 2.8) and recall (eq. 2.9) and is
given by:

Fle 2(Precision) 2(TP) 2.7)
~ Precision+ Recall  2(TP+FP+FN) ‘
where precision is given by:
. TP
Precision = ——— (2.8)
TP+FP
and recall is given by:
TP
Recall = ——— (2.9)
TP+FN

The evaluation metrics outlined here are for binary classification, but a number of ap-
proaches train a regression problem first, or compute the mean softmax of ten classes
(reproduced score distribution) and use Persons Linear Correlation(PLCC) eq. A.6 Coef-
ficient or Spearman’s Rank Correlation Coefficient (SRCC) A.1.

This approach enables distribution analysis also, however it is not always clear in the
literature whether a model has been trained purely as a regression model (reproducing
MOS). Further, training a ten class problem is less challenging and does not give a good
or bad quality estimation. This is particularly apparent with some of the more recent
publications that achieve the highest accuracy training models with 10 node output of a
fully connected layer.

In order to be able to produce an end to end network here, we train a binary classifier
rather than thresh-holding output computed MOS which approaches such as [63], [99]
appear to take.

2.4 Literature Review Summary

We show that deep learning has surpassed HC feature extraction on large dataset where
IAQA is a binary classification problem and outline why we conduct experiment on the
AVA dataset. The role of image processing is now part of data augmentation, however
many of the HC approaches provide valuable insights into IAQA features, in part as they
require a human understanding of the domain. Deep learning inverts this, making con-
volution operator central rather than a method of feature extraction, secondly the pro-
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cess of making predictions beyond good or bad is more more straightforward with HC ap-
proaches where individual aesthetic attributes can be defined, extracted with a greater
degree of explainability.

While many of the deep learning approaches outperform HC reliant feature extraction,
deep learning approaches rely on hand crafting of complex learning policies on equally
complex multi column network architectures.

We also show that ther are many IAQA dataset although many are overlapping and sub-
set of larger datasets such as AVA. We also demonstrate that MOS scores approach a
gaussian distribution and that there is a large majoriy class.

There is a great deal of literature available on IAQA and specifically using the AVA bench-
marking dataset. There also exists some fragmentation within the field with many datasets
where itis not always clear whether one is the subset of the other, further dataset metrics
are not always reported consistently there are further example of this in the appendix A.
Thisis further compounded by a slippage in nomenclature between data source and data
set (DP.Challange). This ambiguity exists within publications [63] use a 25k test set and
[128] use the 19k dataset which is from a test train validation split outlined by [9€]. This
is further compounded by the fact that the images are different in each subset making
side by side comparison challenging.
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3 Methodology

To our knowledge, the deep learning networks and architectures adaptations review in 2
only include traditional hand-crafted approaches and adaptions of various vanilla back-
bone architectures. Almost all approaches formulate problems as binary classifications
and reproduce overall accuracy. There are two approaches to this: thresh-holded MOS
prediction(regression) models output, and training pre-thresholded classes by GT MOS,
both with a test train split applied by [63], [9€].

Here, we adopt the latter as a more challenging problem with a clear relationship to
real world applications of IAQA and less room for ambiguity within the accuracy metrics
(which the authors observe in some of the IAQA literature).

Some approaches appear to present the accuracy of a ten class (model) MOS, which will
give higher accuracy on test data as the trained network will not have to tolerate fully
the significant number of images with MOS very close to the high-low class threshold.
Further, with a 2 node output vs 10 node there are quite simply 5 times less gradients to
vanish.

Here, we train a various transformer models - both vision transformer ViTs and convo-
lutional vision transformer CvTs. The reasons for this are:
1. Transformers have not yet been applied to IAQA and a side-by-side comparison
generates new insights;

2. Many deep learning models have relied on hand-crafted attention mechanisms, a
process which is a learned intrinsic feature of Vision Transformer(ViT);

3. Many more recent models have combined deep features with attention layers to
obtain the best of both worlds;

4. There exist a number of pre-trained models on imagined allowing efficient transfer
learning to and IAQA Domain.

3.0.1 Side By Side Comparisons

Vision transformers require huge datasets and special treatment via custom training
schedulers, which have warm-up and cool-down data phases.

Comparing ViTs, CvTs and CNNs side-by-side on as close as possible training conditions
enables an evaluation of whether the introduction of convolution is a means to soften
the hard requirements of ViTs during training, providing inductive bias inherent in CNNs.

We reproduce an example to illustrate how CNNs convolve and maintain spatial proxim-
ity. Red shows the kernel and green bounding box shows the image area covered; here,
kernel size and stride are parameters that effect feature maps learned.

Contrast this with figure 4.2: patches are exclusive and then attention is learned between
tokenized discrete patches- clearly a very different paradigm.
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Figure 3.1: lllustration of Spatial Inductive Bias

We employ domain adaption as an overall approach, where target domain is IAQA binary
classification and source domain is multi-class classification convolution architectures of
both convolution and ViT models. This brings with it the further strength of being able to
use pre-trained models, which do not require compute intensive training from scratch.
Transformers require large datasets[100], [119], [121], [138], [170], [171] with then hun-
dreds of millions of labelled data entries[170] to converge and produce state of the art
metrics, which is much larger than required for CNNs. This is at least in part because
CNNs encode prior knowledge (adapting stride and kernal size) of image domain such as
translation equivariance [121] across feature maps (figure 3.1 illustrates one example of
this), CvTs do not have this as a possible prior embedding; these must be fully learned
across discrete patches. Various approaches have been used to improve performance,
such as introduction of gated position self-attention (GPSA)[119], [120], [172]. We will
use domain, adaptation, and transfer learning as well as improvements to data require-
ments that have been introduced. This section will cover our approach on the following
areas:
1. Transformer Architecture

Pipeline and Pre-Procession
Data Augmentation
Training Methodology

vk W

Testing Methodology

3.1 Transformers

Transformers have come to dominate over the recent years in many domains, have
outperformed Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN)
such as Long and Short Term Memory (LSTM) architecture[173] and have become a hot
topic.

Many of these were designed to address challenges such as vanishing gradients, and
in many areas, this began with applications such as machine translation within natural
language processing (NLP)[174]. These were also areas where attention mechanisms
have become an integral part[173].

The transformer consists of blocks (head) in which each learner in sequence learns align-
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ment in K, a value query system where input Qis passed to an embedding layer One-Hot
tokenization. Inputis a tensor of shape RZ x RY x RP where Bis batch size, N is sequence
length, and D is dimensional embedding.[175]. Each attention model architecture can be
seen in figure 3.2a

Self Attention

Attention is is a mapping of query (Q), key (K), value (V) pairing - this is not unlike the
python dictionary with a key store. V, K, Q are MxN square matrices. The matrix Q is
the product of the computation of a set of queries with all keys[17/3] d; and values d,,.
Attention output is given by:

T

Vi

Attention(Q,K,V) = Sot ftmax( W (3.1)

Where Dy is the radical(square root) of the number of patches, a process which avoids
vanishing gradients. This attention function is performed in parallel for each head, and
these are concatenated back and re-projected. Figure3.2b, the resulting linear output
depicted in figure 3.2a immediately before softmax layer, which produces class proba-
bility. What is learning in this process are linear projections, first local in parallel (each
attention head) and then through global projection, produce final values given by:

MultiHead(Q,K,V) = Concat (hy, ..., h,)W° (3.2)

Where h; = QWI.Q,KWI.K, VWZ.V or the application of attention function to the i;;, where pa-

rameters of multi-head function are W2 € Rénai. < WK ¢ Rimarxdic WV e Rémat. xdv WO e
Réma.<hds Note the last parameter passed is effectively a O, where h is the number of
attention layers[173], which is, in effect, a high-level recursive application where power
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law applies to recursion depth.

3.2 Vision and Convolution Transformers

Here, we initially train Vision Transformers (ViT) - which were adapted as closely as pos-
sible from [173]'s application within NLP by [94] for image classification, a high-level
overview can be seen in figure3.3. Changes are additional for the final MLP. [94] also
shows that attention head can be mapped onto convolutional feature maps.

Both require flattening of images into 2D exclusive patches x € R?*W*C where C is the
number of channels; H,W are the input image height and width; N is patches of image
resolution; (H x W) is the resolution dimension of P2 where W = H. This is simply N =
W2

P2

The embedding process that [94] introduces is token embedding E where E € R(PXC)xD
(where D is vector size) and positional embedding E s € RO+ which is added to patch
embedding to retain position information given by:

Zp = [xclass; xllgE; S XIIYE} + Epos (3.3)

Where E,,; is learnable positional embedding shown in dark pink in figure 3.3, and is
added to the concatenated patch embedding(s) back to a final 1 x nD Vector, hence both
global and local self attention can be learned.
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Figure 3.3: High level overview of Initial Implementation of ViT [94]
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Model Embedding Heads Layers Params Image Resolution
Dimension
ConViT-Ti 192 3 12 5M 224 x 224
ConViT-S 238 6 12 22M 224 x 224
ConViT-B 768 12 12 86M 224 x 224

Table 3.1: Efficient ConVits trained adapted from [120]

3.2.1 Training Approach

Transformers require extremely large amounts of data to train, 10x typically larger than
any available IAQA dataset. We combat this in three ways:

Transfer Learning leveraging transformers have been trained on ImageNet1k[176];

Data-efficiency using state of the art(SOtA) data efficient transformers[119], [172] that
are able to train on smaller datasets that have been able to train on subsets of
ImageNet1K;

Augmentation using SOtA[177], [178] approaches such as reflection padding;

We use pre-trained data efficient transformers developed by [120] models on image net,
which introduces soft inductive biases (initialization patches through convolution) devel-
oped by [119] and keeping input dimension unchanged at 3 x 224 x 224. Images are
resized from the original to the longest edge. In order to preserve computational infor-
mation, we train on both zero-padded and reflection padded images, where images are
grey-scale 224 x 224 these are stacked to three equal channels as a simple means to
ensure bias is not introduced to the model. We train models of three sizes, of modified
data efficient transformer ConViT € {Ti, S, B}, which are[119]'s adaptions of DeiT-Ti,DeiT-
S,DeiT-B[120].

The models have a final, fully connected layer of [1 x 1000] classes, and therefore we add
a fully connected layer of [1 x 2] using PyTorch nn. Layer(1000,2) to add a finally fully con-
nected layer to the ConViTs model. We trained ConViT-Ti using a formative grid search,
as a new hyper parameter is introduced as a modified Deit-Ti model. This requires sig-
nificant search, and therefor we only perform a grid search on ConViT-Ti. Trained ad-
justing hyper parameters incrementally within grid searches for 10 approaches. We also
train ConViTs € {T1i,S,B} shown inn Table 3.1 with no changes to hyper parameters to
provide insights into how including embedded dimension, number of attention heads
effects performance on test set. Finally, we train the best model on the best performing
hyper parameters.
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3.2.2 Augmentation

Data Augmentation is an important part of regularisation in deep learning [179]; itis a
powerful way to mitigate against over-fitting during training and supports better general-
ization[180] - ensuring that validation error decreases with training error, we implement
conventional methods[181] alongside state of the art methods proposed by[177], [17&].

Here, augmentation of images is in two stages: first, all images are square padded to
zero to preserve com positional information, or reflection padded[177] and resized to
3 x 224 x 224. Larger image configurations are possible, however for consistency in
baseline comparisons and IAQA approaches we maintain this a base dimension. During
training, we augment applying random occlusion/erasure of images to remove a random
patch of image for 16 x 16 pixels, random rotation, spatial transforms such as shear and
colour-gitter, gaussian noise (5,5) filter and gaussian blur (5,5) filter in addition to square
distortions.

We also use occlusion patches randomly applied to images of the same dimension of im-
age patches, this is to strategically remove patch sized areas of the image while allowing
the model to train attention on other areas of the image.

(a) Reflection Padding to 224 x 224 (b) Training Augmentation Rotates (c) Training Augmentation Zero
with Albumentations and Random Erasure/Occlusion Padding, Random Erasures

Figure 3.4: Augmentation Examples

3.2.3 Data Preprocessing and Normalization

An essential part of optimising learning, both to improve training results and ensure
consistency of method elsewhere. All image normalising using image change € {R, G, B}
mean given by:

n=-Yx (3.4)
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And standard deviation given by:

) T (3.5)

Where n is number of pixels and x; is i;;, a pixel value of 0-255.

Resulting tensors are 32-bit floating points (FP) between 0-1, mean and standard devia-
tion RGB values u = 0.485,0.456,0.406, o = 0.229,0.224,0.225.

Ground Truth Discretization

AVA ground truth is derived by two processes. MOS scores are in categories 1 — 10 the
MOS can be computed neatly by:

H = Zai'biT (3-6)
i=1

Where a is a normalised vector of scores and b is a sequence vector 1 —n . Mean scores
are then thresholded by:

(3.7)

I >pu>5<4o
0 <u<s5<4co

Where u is given by eq. 3.6 and o is standard deviation of overall MOS scores. This
results in a small number of outliers (just 97 images out of 255508) excluded from train-
ing, test and validation sets; for many within the literature the convention is exclusion of
MOS +40.

3.2.4 Hyper Parameter Search

We perform several grid searches of hyper parameters by defining a function called
within a training class that initialises existing code using Python’s inbuilt sub process
module, which augments rather than rebuilds the model.

The purpose of a conduction grid search is not to comprehensively tune the base model,
but to assess how newly introduced hyper parameters (‘locality strength’ and ‘locality up
to layer’) which incorporate convolutional inductive bias effectively adapt the model to
the target domain.

This is for methodological consistency, and to enable tuning of newly introduced softer
inductive bias GPSA[119]. The assumption made is that a degree of due consideration is
made by [119], [172].

Presented in this way for conceptual clarity and to resemble as closely as possible Python’s numpy
operations
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Training time for 10 epochs is 25 minutes; where unique parameter combinations are
used, this was a total 3 days per grid search and also involved ensuring that the model
can bereinitialised. Weights were saved for every epoch of each model in the grid search.

parameters | Constraints  Intervals
locality strength 0.5-1.5 10
learning rate 0.001-3 3

Table 3.2: Formative Grid Search Parameters

3.2.5 Test Train Validation

We employ a test train split defined within the literature[98]. For convenience, [63] have
made available a .csv file which has image references alongside test, training and vali-
dation images. For the reproduction of results and methodological clarity, we have also
made available .json files of test image IDs. € {rest,train,validation} image numbers are
19928, 223795, 11779. Figure 3.7c shows a bar plot of € {test,train,validation} sets.

3.2.6 Models

We train from/create several transformer models built on [120]'s DeiT, with added GPSA]
and [138], figure 3.5 show addition of GPSA at local level.
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Figure 3.5: ConViT GPSA Diagram [119]

We train a true hybrid model CvT which maps convolutional layers onto attention patches,
which does not have pre-trained weights available. The model architecture can be seen
in figure 4.2:

This provides metrics on a model that does not have a mechanism for switching between
convolution and self attention, but incorporates as is.

We train ConViT as an architecture that introduces convolutions as softer biases, where
architecture is a positional layer that can be initialised to allow convolution initialisation
of attention heads, with a one-to-one mapping.
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Figure 3.6: CvT Architecture and Pipeline [138]

3.2.7 Addressing Class Imbalance

When thresholded into positive and negative image classes, the AVA dataset is heavily
imbalanced towards the positive class with ration of (0.43:1).

There are approaches to addressing class imbalance that involve defining a loss function
and using balanced accuracy during training. However, we found that this was overly
complex for a binary classification problem. Therefore, to address class imbalance dur-
ing the training of ResNet € {18,50,152}, we employed a data sampler to over sample
the minority class during training. This further enabled repeated augmentation of the
minority class which would not be possible if using a loss function. Class weights for the
data-sampler are given by 4.1.

Counts of Thresholded Classes MOS Scores Before Thresholding Training Test Validation Sets

o
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.
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- i
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(a) Binary Class (Thresholded) (b) MOS Scores (c) Training, Validation, Test

Figure 3.7: Class Imbalance and Test Training Validation Splits

3.2.8 Research Methodology Summary

We apply domain adaptation transfer learning, and train both baseline models (ResNets)
to enable side-by-side comparison of ViTs, CvT's and CNNs, adding a fully connected
linear layer which outputs a 2D vector of n X ¢ elements, for each class corresponds to a
number of classes y = xAT + b where AT is the transposed input of the preceding layer;
b is some learnable bias.

For training (batch-wise), validation (set-wise), and test (set-wise) inference, we apply a
softmax function to produce class probables of the linear layer. We threshold data into
binary classes from a continuous probability distribution that is calculated for each image
based on a total number of votes, where each image receives an average of 210 votes.
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Thresholding given by eq. 3.7 is standard across IAQA literature on the AVA bench mark-
ing dataset. We also perform a grid search to establish a new hyper parameter, intro-
duced by [119] locality strength. All models are pre-trained on ImageNet1k, and we train
all models for 10 epochs with all layers unfrozen (trainable).

We try to apply a range of data augmentation techniques as part of training, which is
doubly important as we have employed a data sampler that oversimplifies the minority
class. We also outline a case for implementing convolution to introduce a soft inductive
bias to the CvT's training to see if this makes the best of both transformers and CNNs,
and also show how two very different models (CNNs) and ViTs learn.
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4 Results and Discussions

4.1 Experimental Settings

The settings for all experiments were conducted using test trains split defined by [63],
and data augmentation outlined in chapter 3, with input of raw images resized to 3 x
224 x 224. To enable effective side-by-side comparison with baseline, state of the art
pre-processing steps are kept the same. We also used transfer learning from the same
source dataset, ImageNet1k. Transformers and CNNS are, however, inherently differ-
ent - for example, learning rate alongside approaches such as warming-up[170] are nec-
essary for transformers to converge, therefore some aspects - such as learning rate -
change during training of baseline and transformer models.

4.1.1 ResNets and ConViTS

We conduct experiments to obtain baselines using ResNets € {18,50,152} and ConViT
models € {tiny, small,base}, which are pre-trained on ImageNet-1k, and added an addi-
tional, fully connected layer to correspond to binary classes. Hyper parameter selection
is a crucial part of tuning and adapting models to the target domain.

Table 4.1: Hyper Params

Hyper Param | ResNet innitial ConViT Equal Conditions
Learning Rate 0.0001 0.0005 0.0003
Colour Jitter 0.5 0.5 0.5
Optimiser Adam AdamW AdamW
Batch size 50-250 10-200 10-200
Loss Function crossentropy  Crossentropy crossentropy
Cool down epoch - 5 0
Scheduler StepLR cosine cosine
Opt. € - 1e-08
Local up to layer - 10 -
Locality strength - 4.0 -
Ir noise pct. - 0.67 0
Warm up epochs - 5 3
Warm up Ir - 1e-06 1e-06

4.1.2 Optimiser and Scheduler

These differ slightly between ConViT and baseline models.

For ConViTs We use AdamW with a Cosine’ learning rate Scheduler;

https://github.com/rwightman/pytorch-image-models/blob/master/timm/scheduler/cosine_Ir.py
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for ResNets we use Adam and AdamW with Stepped learning rate scheduler and cosine
scheduler;

for ViT and CvT we use Adam with Cosine learning rate scheduler;

We use an Adam optimiser[115] as gradient base optimisation for simplicity of imple-
mentation and computational efficiency. We use a Cosine Scheduler by [1719] for ConViTs,
as there is clearly a trade-off in keeping domain parameters the same. Both schedulers
are a form of simulated annealing, which allowed for a change in learning rate over time
- mitigating against the challenges of gradient based approaches, such as saddle points.

We train networks in separate code environments?, using code supplied by [119] for Con-
ViTs and CvT. We train all models under equal conditions, in the same code environment,
with identical training and data augmentation pipelines. Various aspects, such as data
augmentation, are inherent features of training pipeline.

4.1.3 Loss Function Vs Data Sampler

Loss function is necessary to minimise the difference between GT labels, and where min-
imisation of loss or error between GT and predicted result is required. While formative
experiments were conducted with focal loss, we adopt a cross entropy loss function.
While [182] have shown that focal loss, combined with cross entropy, have been shown
to be effective techniques in addressing class imbalance.

We use cross entropy with a sampler, where random sampling from the minority class
with a weighted probability is used to address this. This is effective, as it allows repeated
augmentation of the minority class during training. Further, this is the technique used
in code for training on ImageNet-1k by [119], [120], and therefore provides methodolog-
ical consistency across baseline and vision transformer models .torch. utils .data.sampler.
WeightedRandomSampler

Where samples are computed for every batch given by:

Bn
Sc = ZIT": (4.1)
1=

Where Sc s sample ratio Bn is the number of batch samples, and Cn n is the class count
of each batch.

4.1.4 Software and Hardware

The experiments were conducted using a single Nvidia Tesla P100 12Gb GPU, with CUDA
11.2. The software used for training was PyTorch open source framework, with data am-
munition using both Torchvision’s native fictions alongside Albumentations[17/7]. ConViT

2https://github.com/facebookresearch/convit
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Software Version Purpose
torch 1.7.0 Training ConViTs
timm 0.3.2 Building ConViTs

albumentations | 0.4.6  Data augmentation
torchvision 0.8.1 Pre-trained models

Table 4.2: Software

models were built using timm?. All software is implemented using Python 3.7.

4.2 Quantitative Results

4.2.1 Training

ResNets

Training ResNets for 10 epochs shows differences in overall accuracy. These are shown
in figure 4.1. In training and validation accuracy, loss, and balanced accuracy, all layers
were unfrozen to allow pre-trained models to be fully adapted during training.
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Figure 4.1: Side by Side Comparison of ResNets

Resnet 152

Note that only ResNet18 converges after pre-training, which importantly shows that
ResNet18's depth may not have enough trainable parameters or be deep enough to
produce the best results. Further, note that after convergence there is very little im-
provement of training or validation accuracy.

Balanced accuracy shows more instability, indicating that accuracy in itself may be ‘mask-
ing’ model fitting. However, both appear similar where equal numbers of positive and
negative classes are sampled in each training batch.

ResNet152 continues improvement in accuracy and balanced accuracy (there is also less
difference). This indicates that when a model has sufficiently trainable parameters and

3https://github.com/rwightman/pytorch-image-models/tree/master/timm
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is deep enough that there is a high degree of similarity to features that are trained on
ImageNet21k.

Resnet 18 Resnet 50 Resnet 152
Validation Training Validation Training Validation Training
Accuracy 0.706 0.726 0.710 0.906 0.741 0.980
Balanced Acc 0.747 0.815 0.854 0.944 0.964 0.977

Table 4.3: ArgMax Resnet Training Metrics

Table 4.3 shows the differences in training accuracy and balanced accuracy - there is a
clear improvement in increasing model size over the same number of epochs.

CvT and ConVits

We train both CvT[138] and ConViTs to enable side by side comparison. Results from
training CvT[138] show that a model will converge after 5 of epochs (see figure 4.2 right),
however, the model quickly plateaus. This can be seen in figure 4.2 left.
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Figure 4.2: Hybrid Convolutional Transformer Training

Further, it can be seen that training inference is unstable (both training and validation
(balanced accuracy) vary significantly), which is consistent with observations elsewhere -
often requiring a warm-up (tapering of learning rate) during initialisation. Further, given
the inclusion of a data sampler, balanced accuracy does not provide a clear prediction of
model accuracy and therefore subsequently trained models do not report this. 4.2 left.

Comparing results between CvTs and ConViTs, both without pre-training on ImageNet1k,
shows erratic training performance on validation sets.

A marked improvement can be seen in the use of pre-trained models with a 5 epoch
warm up, shown in 4.3, where it is also clear the model size has a bearing on validation
accuracy (although this appears to be slight).
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Figure 4.4: ConViTs With Pre-training

Hyper-Parameter Tuning and Data Augmentation

Conducting a grid-search over learning rate and locality strength, it is clear that learn
locality strength has a slight effect on model performance. Training was conducted with
no warm start epochs. This shows that decreasing learning rate improves overall per-
formance. This is shown in figure 4.5 left. The newly introduced hyper-parameter has
some effect on overall performance.
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Figure 4.5: ConViT Ti Grid Search Between Learning Rate and Locality Strength (With Control)

Control training, including warm up epochs, was introduced to demonstrate difference
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A-Lamp Salient Crops
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Figure 4.6: Comparison of ConViT Ti Trained on Salient Patches from A-Lamp Model [126]
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Figure 4.7: Comparison of Augmentation on ConViT Band S

between training with and without warm starting. This is shown in black on figure 4.5.
This also shows that using pre-training that not using a warm start results in relatively
high accuracy, with almost no training on the AVA dataset.

In order to compare spatial data augmentation, we performed training of salient crops
where 5 x (224 x 224) sub patches of each image were taken using the attention algo-
rithm provided by[126]. This was in order to gauge how a self attention model might
train on data, and whether higher resolution patches might enhance training. Training
on all five sub patches separately, alongside training on all patches pooled, is shown in
figure 4.6.

Combining all demonstrates best performance, however all perform less well than a
global/non cropped image, which indicates that the ConViTs are learning composition
information.

We also compared training on zero-padding to square and reflection padding. The logic
of thisis that reflection padding maintains composition data, while reflecting the shortest
edge effectively also encodes an image border.

This shows some improvement during training by reflection padding.
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Starting State Augmentation Search
Pre-train  No Pre-train | Reflection Pad Zero Pad Salient Crop | Grid
ConViTB 0.766 0.708 0.756 0.758 - -
ConViT S 0.767 0.711 0.769 0.769 - -
ConViT Ti 0.765 0.705 0.749 0.714 0.747 0.776

Table 4.4: ArgMax Validation Results after 10 Epochs

4.2.2 Test Metrics

Table 4.5 shows all results evaluated on AVA test data: 19k images on reflection padded
and normalised images. Note that accuracy does not improve monotonically with model
size for ConViTs, but does for ResNet models - however, F1 score does appear to obey a

monotonic relationship with size of ConViT Model.

We also compared this with zero-padded images to square, as this might
images are processed in the wild:

Here, each ConViT out performs in accuracy, however it is interesting to note ResNet152

out performance on balanced accuracy and F1 Score ConViT B.

reflect how

Accuracy| Balanced Acc. F1 N epochs Weight Save Arg
VITB 39.96 26.66 39.93 10 Last Epoch
CvT 63.90 76.68 52.47 25 Max Acc. Epoch
ResNet 18 R 70.23 58.08 65.66 10 Last Epoch
ResNet 50 70.85 99.54 41.70 10 Last Epoch
ResNet 18 71.31 86.84 54.74 10 Last Epoch
ResNet 152 72.69 87.66 55.84 10 Last Epoch
ConViT Ti 73.17 95.52 49.58 10 Last Epoch
ResNet 50 R 7413 72.06 65.69 10 Last Epoch
ConViT Ti 74.33 90.90 55.42 10 Max Val. Acc. Epoch
ConViTB 74.58 85.53 59.65 10 Last Epoch
ConViT S 75.02 87.58 58.85 10 Last Epoch
ConViT S 75.06 90.22 56.94 10 Max Val. Acc. Epoch
ResNet 152 R 75.63 60.32 70.82 10 Max Val. Acc. Epoch
ConViTTiR 76.29 72.33 68.07 10 Max Val. Acc. Epoch
ConViTSR 76.29 72.33 68.07 10 Max Val. Acc. Epoch
ConViT B 76.47 81.00 64.59 10 Max Val. Acc. Epoch
ConViTBR 76.82 70.38 69.35 10 Max Val. Acc. Epoch
NIMA 77.25 69.51 70.56 0 Pre-Trained
ConViTBR 78.11 73.17 69.92 25 Max Val. Acc. Epoch
MLSP 81.65 66.68 76.08 0 Pre-Trained

Table 4.5: Evaluation on Refection Padded Normalised Images Square Padded on 19k

AVA Test Set
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We show that, when trained on best hyper parameters (from the grid search conducted
[learning rate <0.0015 and locality strength 1.5]), ConViT B outperforms NIMA[63], whose
results we reproduce on their test set with a pre-trained model made available alongside
their publication. Both the F1 score and balanced accuracy of MLSP[128] are lower than
ours. This is in spite of the potential that training an end to end binary classifier is more
challenging, with a smaller, fully connected final layer output of 2 rather than 10 (one for
each MOS probability produced by normalised MOS score over 10 bins).

One further important feature to consider is that [63], [128] both sample from much
larger initial images, and we only train on 224 x 224 resized images. We also show a
confusion matrix (each column represents the entirety of the 19k AVA Test set sample
space). Here, we see that ConViT B outperforms in maintaining a high number of TPs
while not sacrificing the the negative minority class TN.

ResNet 50 R ResNet 152 R ResNet 18 10 ConViTTiR ConViTBR ConViTS M ViT B MLSP NIMA

tp 0.62 0.58 0.66 0.64 0.63 0.70 0.52 0.65 0.62
tn 0.12 0.18 0.05 0.13 0.14 0.05 0.08 0.17 0.15
fp 0.09 0.13 0.05 0.08 0.08 0.01 0.19 0.06 0.08
fn 0.16 0.11 0.23 0.16 0.15 0.24 0.20 0.12 0.15

Table 4.6: Confusion Metrics on 19k AVA Test-Set 19k

Table 4.7 shows nomenclature used in tables (4.5, 4.6), as models performed differently
according to whether zero-padding or reflection padding were used during data aug-
mentation. We also show type number of layers and dimension of resized images.

Augment Layers Type Dimensions
ResNet 18 Z Zero Pad 18 Residual CNN 224 x 244
ResNet50Z  Zero Pad 50 Residual  CNN 224 x 244
ResNet 152Z Zero Pad 152 Residual CNN 224 x 244
ConViTTiZ Zero Pad 12x3 Conv. Vision Transformer 224 x 244
ConViTS Z Zero Pad 12x6 Conv. Vision Transformer 224 x 244
ConViTBZ Zero Pad 12 x 12 Conv. Vision Transformer 224 x 244
ResNet 18 R Reflect Pad 18 Residual = CNN 224 x 244
ResNet 50 R Reflect Pad 50 Residual CNN 224 x 244
ResNet 152 R Reflect Pad 152 Residual CNN 224 x 244
ConViTTiR Reflect Pad 12 x3 Conv. Vision Transformer 224 x 244
ConViTSR ReflectPad 12 x6 Conv. Vision Transformer 224 x 244
ConViTBR Reflect Pad 12 x 12 Conv. Vision Transformer 224 x 244
VITBR Reflect Pad 12 x 12 Vision Transformer 224 x 244
CVvTR Reflect Pad 3 x 10 Conv. Vision Transformer 224 x 244

Table 4.7: Number Parameters and Training Time Per Epoch 230k Images on 1 GPU-
batch size 10 Inference on 19k Images on AVA dataset
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4.3 Exclusive Set Analysis

This section shows images from the subsets shown in Table 4.8. These images are a
complement set of the union of all other model inferences on the 19k image AVA test
set, M = U;_,F; where F is all other models. This is performed for each model and each
inference type € {tp,tn, fp, fn}. The results are shown in table 4.8, we compute this for
the best performing model of each type. This shows as a discreet value, the number of
images where a single model over or under performs against all the others in the entirety
of the 19k.

tn fp fn tp

ResNet50 R 131 17 408 7
ResNet 152 R 343 2 599 1
ResNet 1810 52 122 286 13
ConViTTiR 86 3 170 1
ConViTBR 129 9 201 4
ConViTSR 5 76 9 24
ViT B 341 157 2422 18

Table 4.8: Number of Unique Images by Confusion Metric Categories

An interesting observation is that ViT, despite performing poorly overall, still correctly
identifies a significant number of images that are challenging for other models. Overall,
ResNets have far more false negatives where they alone under-performed. This is an
important observation, as this is for the minority class. Here, one might consider whether
this gap would grow with the availability of more data.

4.4 Qualitative Results

We show images from the test 19k test set - which are identified by each network in
€ {tp,tn, fp, fn} - and are members of the exclusive sets shown in table 4.8. This may
provide insight into the types of images that each network is performing best and worst
(thatis unique to that each networks inference). Images are chosen at random from each
exclusive set. This is to provide insight into how each network is selecting attributes that
may be visible to the human eye. It is clear from the MOS score that these images are
generally from the ambiguous range of MOS.

4.4.1 ResNets and ConViTs True Negative

ConViTs (4.8a, 4.8b, 4.8c) appear to pay more attention to composition information,
where as ResNets - shown in figures ( 4.8d, 4.8e, 4.8f)- appear to predict better where at-
tributes such as good lighting and colour harmony are distinguishing features for images
in the ambiguous range.
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Figure 4.8: Examples of Exclusive True Negatives Predictions by Each Network (Exclusive Set) on AVA Test Set

4.4.2 ResNets and ConViTs True Positive Images

ConViT models appear to be less able to resolve positive class images that are not iden-
tified elsewhere. Again, it seems clear that interplay between composition and salient
objects/distinguishing features, where figures (4.9a, 4.9b,4.9¢) appear to show some se-
mantic class ambiguity 4.9¢. Left shows an animal made of grass/leaves and 4.9a shows
an image of parking meters that have eyes.
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Figure 4.9: Examples of Exclusive True Positive Predictions by Each Network (Exclusive Set) on AVA Test Set
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4.4.3 ResNets and ConViTs False Negative Images

ConViT FNs are shown in figures (4.10a, 4.10b,4.10c) and appear to falsely rate images

as negative with a bias again towards high level semantic information, in contrast with
ResNets' FNs shown in figures(4.10d, 4.10e, 4.10f).
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Figure 4.10: Examples of Exclusive False Negative Predictions by Each Network (Exclusive Set) on AVA Test Set

4.4.4 ResNets and ConViTs False Positive Images
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Figure 4.11: Examples of Exclusive False Positive Predictions by Each Network (Exclusive Set) on AVA Test Set

ConViT FPimages appear to show a bias for global form, shown in figures (4.11a, 4.11b,4.11¢),
however, not the MOS of figure 4.11¢, which is exacly 5.0 where negative class is < 5. Fig-
ures (4.11d, 4.11e, 4.11f) show F Ps exclusive to respective ResNets.
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4.4.5 Training Metrics

When shown in the same plot (figure 4.12), itis clear that ResNet50 and 152 overfit during
training and that ConViTs (as well as CvT) consistently improve with accuracy in a more
linear fashion. Further, it is noteworthy that ViT (pure transformer) shows a dip in initial

training accuracy during training, and validation loss steadily increases.

All Models Compared ViT,ConViT,CNN
train loss

train acc

— ConviT B

train acc

Figure 4.12: All Models Compared

High maximum validation loss for all of the ResNet models is shown in table 4.9. Itis also
noteworthy that ViT B performs well on the validation set (outstripping all other models

which declined after first epoch).

55555555555

val loss

Train. Acc. Train. Loss Val. Acc. Val. Loss
ViTB 0.778 0.604 0.786 0.621
ConViT B 0.766 0.629 0.781 0.549
ConViT S 0.767 0.638 0.746 0.554
ConViT Ti 0.765 0.663 0.762 0.578
ResNet 152 0.980 0.535 0.741 1.074
ResNet 50 0.906 0.604 0.710 0.819
ResNet 18 0.726 0.665 0.706 1.232
CvT 0.700 0.681 0.625 0.711

Table 4.9: Overall Maximum Training Results Compared
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We also show inference times and training times per epoch to give additional compute
resources, and show how models might perform when embedded in a real world appli-
cation (table 4.10). ConVit B is clearly resource intensive.

# Million Trainable Params. Train Time Per Epoch 230k Images Inference Time 19k Images
ResNet 18 1.2 56 mins. 3 mins.
ResNet 50 235 73 mins. 4 mins.
ResNet 152 58.1 121 mins. 5mins.
ConViT Ti 55 78 mins. 3 mins.
ConViT S 273 92 mins. 4 mins.
ConViT B 85.8 144 mins. 5 mins.
ViTB 85.8 121 mins. 5 mins.
QT 17.6 94 mins. 4 mins.

Table 4.10: Number Parameters and Training Time Per Epoch 230k Images on 1 GPU-
batch size 10 Inference on 19k Images on AVA dataset
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5 Conclusion and Future Work

This section outlines the contributions that we have made to IAQA as well a outlining the
limitations and drawbacks in section 5.2. Section 5.3 gives an outline of both potential
for real world applications and areas of research that might provide new learning such
as multi modal transformers(section 5.3.1) Social network (section 5.3.1) and continuous
learning (section 5.3.1). Finally we address potential applications of IAQA research and
trained models in section 5.3.2.

5.1 Main Contributions

We have shown that transformers, even when very large and could not be trained nor-
mally on datasets as small as those available for IAQA, do perform well. Further, while
initial training of ConViTs on ImageNet1k is often ongoing for almost a week, that us-
ing distributed training these models easily transfer to IAQA domain. Even after only a
few epochs, they appear to show high training accuracy. This makes them suitable and
efficient models (when pre-trained) and further shows that there is a high degree of sim-
ilarity between what has been learned on ImagNet1k and the IAQA domain, which may
seem counter intuitive. This is a useful finding in itself, and is further underscored by the
high performance of ViT in early epochs.

Many of the images in the AVA benchmarking dataset are ambiguous, and transformers
appear to handle these more effectively - with the ability to correctly predict ambiguously
scored images where the semantic content is also ambiguous.

Newly introduced hyper parameters, such as GPSA, do not appear to show improved
ability to adapt. While they converge on less data, they are still not suitable for use on a
dataset as small as AVA.

We showed that training does not necessarily require warm up epochs for a binary classi-
fier for ConViTs, however this does not seem to be the case for ViT where the initial epoch
shows the highest validation accuracy (both overall when compared to other models and
to subsequent epochs). There are two potential ways to interpret this: first, that the soft
inductive bias cushions the adaptation of pre-trained models with its soft inductive bias,
and second, that the warm up epochs simply were not sufficient (set to 3 for all mod-
els). This second possibility would be verifiable by conducting more experiments and
adjusting the warm up epochs of the scheduler.

The former might be verifiable by introducing convolution layers and gradually mixing
heads that have convolutions with heads that do not have convolutions.
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5.2 Limitations and Critical Evaluation

There are several drawbacks to the approach that was taken here. These fall into the
following categories:

* Training Approach;

+ Models; Experimental design;

« Evaluation.

We trained initial ConViTs[119] using available code at a high level. This made it possible
to introduce hyper parameter ‘locality strength’ as this was a high level pragmatic fea-
ture, however we did not initially train under identical conditions, with controls such as
random state, using the same scheduler and optimiser. This made the initial comparison
difficult, and required retraining all models under identical conditions.

We did not make additions to models apart form adding a linear layer with outputs cor-
responding to a binary class, and as such are not able to assess whether adjusting the
model architecture would have improved the model performance. This, however, is cur-
tailed by the limitations of using pre-trained models where training transformers from
scratch is not possible on the datasets provided or with the compute resources available
to us.

While some aspects of the architecture, such as the depth and size of the model, are
compered, we did not conduct an ablation study which could have provided insights
into which part of network are most critical for inference and to explainability of results.
This was in part as the size of models required lengthy training, which would have been
prohibitive within the timescales for this project.

5.3 Future Perspectives

There is clearly a great deal of potential for more research both in the application do-
main of IAQA, and within image classification more widely. Where the focus of the gen-
eral classification tasks on ImageNet1k is geared towards improving model performance
and domain applications are focused on sub, or application domains, we make recom-
mendations both in terms of research within the field of IAQA and applications of IAQA
to industry.

5.3.1 Further Research

While we have trained a significant number of different networks to provide a side-by-
side comparison, and have made adaptations to a binary classification problem, it would
be interesting to see how network architectures might be adapted or how ensemble
training might leverage the best of both the ViT and CNN worlds globally as well as locally.
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Consideration is made here to:
+ Model Architecture and spatial adjustment including Siamese approaches and un-
supervised; Training as 10 class probability distribution and or regression;

+ Exploring other areas of data including data dictionary, metadata and textural in-
formation.

Vision transformers offer a new perspective, both in qualitative results and in their po-
tential to reach higher accuracy - however, CNN approaches that have inbuilt attention
mechanisms still outperform out of the box ViTs and ConViTs.

Another option would be training as a 10 bin (probability distribution) to produce a more
detailed metric, which might have provided a finer grained analysis as has been provided
by [99]. This would further enable side-by-side analysis of accuracy 10 bin probability
distribution, where accuracy might be compared with both the majority class as well
as mean score. This would allow the comparison of predicted probability distributions
alongside actual probability distributions.

Further experiments could also examine the possibility of adjusting convolutional fea-
tures to adjust levels of inductive bias 3.1. This might include adjusting the stride, but
also looking at max or average pooling of convolution feature maps that are larger than
VIT patch dimension.

Further, many of the images in the AVA benchmarinkg dataset are much larger than
224 x 224, therefore data is clearly lost in downsampling images. A large feature of the
AVA dataset is the size of the images; a significant portion of the 64gb uncompressed
dataset is effectively lost. This is further compounded by the fact that image resolution
is itself a potential aesthetic attribute, and photographers may have purposefully chosen
high resolution images or vice versa as a part of their competition submission.

This might require adjusting patch sizes to optimise for the task, as this may be the bot-
tleneck in learning should larger images of 3 x 256 x 256 for example.

Multi-Modal Transformers

Given that is is well recognised that the semantic content of images has a bearing on
aesthetic quality[17], [45], it would be useful to examine multi-modal approaches to us-
ing both natural language and vision transformers, particularly given the successes of
natural language transformers such as BERT[174], [183]. Some key areas within this are:

1. Key areas within this are.
(@) A mapping of Tokeniziton and feature mapping between NLP tokens;

(b) Training NLP for both sentiment and semantic content form image pages to
enhance training and develop context aware feature maps;

(c) Examining the nature of figurative language and the content of the image (it
is well known that parts of speech and written natural language that remain
challenging are to do with nuance interpretation, for example, the use of sar-
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casm or irony. Properties that are intuitive parts of human social interaction;

(d) Examining what further content there is available on a dataset that is not in-
clude with AVA - each individual image page on DPChallenge.com has a great
deal of momentary from DPChallenge.com members.

The text descriptions of each image provided by the users of DPChallenge are rich ex-
amples of human annotation.

The colors and the smallest structure of bugs is amazing. You have brought
to ones eye all we don't see.[184]

A part of this may also be mapping an online social network (DP.Challenge.com)’, some-
thing that in itself might prove to be fascinating research.

This approach might also yield explainable insights into the transformers beyond atten-
tion[185], with the training of NLPs providing contextual information that might be pur-
posefully excluded or altered.

Continuous Learning

Continuous learning is recognised as being of particular importance where context is
vital [186], [187], and IAQA is one such area where context and new available data take
precedence.

For instance, DPChallenge has added 120k new images since AVA Bench marking dataset
was scraped and compiled in 2012. We have web-scraped these along with the associ-
ated meta data. With more than one new challenge being created per calendar month,
which, in addition, have frequently updated comments.

One particularly exciting area within this is the potential for training and predicting im-
age quality in real time, and comparing with completion ground truth as this develops.
This would also have the potential to be leveraged for commercial purposes, where find-
ing and ranking new image content may be part of obtaining a competitive advantage -
especially where photo and advertising need new content that is of high quality that also
reflects, for example, current fashion trends. Such a model might be able to provide in-
sights into what is different between trending styles and well established image quality
features.

IAQA is a rich field, with many publications - <300 associated with the AVA benchmarking
dataset. Performing a meta analysis of the domain, including mapping citation relation-
ships and datasets, would be a rich exercise and contribute new knowledge to the field.
This would also support the production of a data dictionary for IAQA.

The code repository associated with this dissertation provides a formative example of
how this might be structured?. Many of the IAQA datasets reviewed in chapter 2 shown

Thttps://www.dpchallenge.com/
2https://github.com/fdsig/iaga
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in table 2.3 and in the appendix A. These provide subclass granularity, as well as quality
classes.

Social Networks

The online community within dp.challenge.com is clearly well established, with trust and
supportive feedback being provided by members. In addition to leveraging the com-
ments data outlined above, it may also be a fruitful avenue of research to use deep
learning for community learning and to map the online community [188], [189]. This
may also feed into other areas of research where online community is central, such as
deep fake detection [190].

The dp.challenge.com community might also have a vested interest in such areas, with
a growing potential for deep fake images being presented in competitions. Further, this
may also have the benefit of providing new meta data on the AVA benchmarking dataset,
with the ability to leverage data on voting patterns within competitions - something that is
presently absent and has been the source of criticism of the AVA benchmarking dataset.

5.3.2 Recommendations and Applications

While IAQA as a classification task in its own right is interesting, there are also several
areas of commercially that could be further developed - such as a mobile application.
This might involve research into how best to prune networks and make different trade-
offs, such as whether false positives or false negatives are preferable. Further, model
size would be an important consideration within on device real time IAQA inference -
increasingly compact and efficient CNNs[191] might be appropriate. Many of the models
trained would be too large to use for inference on a mobile phone device.

Areas that haven't been explored are:
+ Art applications have not been fully explored;

* Predicting individuals as well as groups as a commercial application;
+ Embedding quality estimation within a mobile application.

Novel applications may come from deeper rather than broader research. For instance,
using art databases to learn the aesthetics of particular periods of art history. This would
involve formulating IAQA problems in different ways, such as conducting unsupervised
learning to, for example, learn the aesthetic space of a particular artistic movement.

Aesthetic classifiers as filers on databases: this may be useful in areas such as medical
imaging, to be able to either apply or select from high quality images alongside having
applications in mobile device filter.

On-device image enhancement: in a world where much of our lives are recorded on
mobile devices, this is clearly something that has a great deal of commercial potential,
as is automated enhancement or selection of product photographs such as [68]
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A Appendix

A.0.1 IAQA Metrics Used Where Models are Trained as Regression
Problem

The approach to IAQA on AVA has generally been of binary classification however a num-
ber of approaches treat IAQA as a 10 class problem reproducing a a probability distribu-
tion via softmax. Where this has been the case a predicted MOS has been computed as
in eq. 3.6 and mean correlation metrics have been used alongside classification metrics
to evaluate model performance:

Spearman’s Rank Correlation Coefficient

Spearman’s rank is use to evaluate model performance by [63] on the MLSP model. This
is used as an alternative to Pearson'’s linear correlation (PLCC) and is a measure of a
monotonic relationship rather than linear.

6y d?

Y (A.1)

p=1-

Where d; is the difference in ranks of predicted and actually mean IAQA scores.

MOS (Mean Observed Score) Ground Truth (GT) and predicted value are given by softmax
mapping of the final layer of the network given by:

o(z) = (A.2)

i and j are respective output values of the network:

esi .
G(Zi>:W fori=1,2,....n (A.3)

Where ground truth and predicted MOS values of images are given by vectors.



Ypredicted = . (A.4)

Yground = . (A.5)

ym_

Pearson Linear Correlation Coefficient (PLCC)

This gives conventional correlation between variables, and is a measure of linear rela-
tionships. The r score is given by:

n —

_ iy (i —%) (i —y)
VI (i — %) (yi —)?

r (A.6)

Where x is the predicted score and y the ground truth score and X,y are respective means
(MQOS score).



A.0.2 Single Attention Head of ConVit Models

Figure A.1 shows a high level overview of a single attention head used in all ConVit Archi-
tectures.

.
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[

Figure A.1: ConViT Layer



A.0.3 Grid Search Function

def grid(self):

para, parb, parc = (self.args[arg] for arg in args)

search_space = [

[paralidxa],parb[idxb],parc[idxc]]

for idxa in range(len(para))

for idxb in range(len(parb))

for idxc in range(len(parc))]

return [' ".join([key+' '+str(arg)
for key, arg in zip(self.args,par_comb)])
for par_comb in search_space]

Listing A.1: Grid Search Hyper Parameters




A.0.4 Tilt and Shift Lense Example

Focusing plane
(after tilting)

Focusing plane
Focusing plane (after shifting)

Imaging plane Imaging plane Imaging plane

(a) Tilt Shift Optical Diagram

(c) Tilt Shift Qualitative Example Architectural Photography Perspective Correction

Figure A.2: Tilt and Shift Example [192]




A.0.5 Aesthetics with Attributes Database (AADB)

This dataset was introduced by [59] and consists of 10k images. It is available online,
however only with Mandarin file details.

S. Kong et al.Kong2016 purpose the datasets as a solution to some the pitfalls of other
large-scale datasets, such as class imbalance and the inability to ascertain whether the
same user has voted multiple times. AADB was produce by web-scraping from Flickr
and random-sampling before abating ground truth from five different individual raters
to then compile a confidence score for each attribute.

The MOS scores are treated as a continuous variable rather than being thresholded into
a good or bad category.



AADB Positive ldentification of Hand Crafted Classes
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Figure A.3: AADB hand crafted classes

A.3 shows subjectively that those with a high number of aesthetic attributes are associ-
ated with binary classes of high and low aesthetic image quality. Top row images clearly
showing high dynamic range, preservation of The dataset is split into high and low and
author use. This in combination with aesthetic attributes for algorithmic inference of
high or low images based on aesthetic attributes.

AADB Binary Classes

AADB_10_low.jpeg AADB_12_low.jpeg AADB_14_low.jpeg AADB_15_low.jpeg

AADB_11_high.jpeg AADB_13_high.jpeg AADB_1_high.jpeg

-

>
3

Figure A.4: Examples of AADB data-set binary classes

A.4 gives some insight into what high and low images ‘look’ like, and it is clear to the
human/subjective eye that even from a small number of images that aspects such as
multiple salient objects - where the foreground object is out of focus (top right) - are
attributes of low quality images.

However, this also highlights the high level of potential for ambiguity, wherein other im-
ages shallow DOF indicated by image features such a bokeh and high levels of blurriness



around are also present in low quality images. Clear visual comparisons appear in fig-
ure A.4 bottom left and AADB A.4 top right, where both images have DOF - however, the
bottom left high quality image has a salient object (bird) which is in focus where AADB
15 has a salient object (animal) out of focus.

Ground truth within the dataset was provided by Amazon Mechanical Turk and images
within this dataset have controls applied, such as the exclusion of synthetic or heavily
edited images and images tagged with qualities interesting content, object emphasis, good
lighting, colour harmony, vivid colour, shallow depth of field, motion blur, rule of thirds, bal-
ancing element, repetition, symmetry. These are showingin A.4, and also provide an insight
into high and low quality images.

Aesthetic Rating Online Database AROD

AROD was compiled from images from Flickr between January 2004 and November 2016[65,
p. 3] and takes note of the number of 'faves’ and ‘likes’ of the images.

They propose a scoring function into high and low categories. This presents a very dif-
ferent distribution of images than is seen elsewhere, and while dataset size is significant,
the criteria for scoring data remains somewhat distinct from others where thresholded
from a normal distribution.

The ground truth of this dataset is taken from a much larger sample of raters, with an
mean of 7k data-points per image. The authors make use of AMT to validate the useful-
ness of the derived ground truth metric that is computed from uncontrolled user clicks.

The final model is then trained on ResNet50 and produces 75.83 accuracy - it is, how-
ever, unclear whether training a binary classifier in this way would perform well on a
bench-marking dataset such as AVA, as the authors do not provide evaluation metrics

on datasets used elsewhere.
AROD
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Figure A.5: AROD data-set binary classes top: high, bottom: low



Note centre left, where the salient object is out of focus and the background is in fo-
cus in middle bottom left - this is subjectively apparent across datasets where, within a
class, there are often images that apparently have otherwise similar visual appearance
but where there remains a contradiction of an aesthetic principle (that the salient object
should remain in focus).

A.0.6 ALIPR

This dataset represents a unique example of sentiment tagged images. The authors
also highlight the pitfalls of using crowd sourced MOS scores for sentiment; this dataset
presents a novel approach for inferring individual image aesthetics to augment blunt
MOS rated images.

The dataset is compiled by [157] and is and early example of an IAQA dataset. This was
derived using [193] developed by Wang, Bovik, and Lu and is an example of building on
existing hand-crafted feature work within IQA.

It was part of hand-crafted feature selection for rating images based on 10 different emo-
tions: Surprising, Amusing, Pleasing, Exiting, Adorable, Boring, Scary, Irritating, Other, No
Feeling.

The authors aggregate data for descriptive purposes and employ traditional regression
analysis rather than for machine learning on their relatively small dataset. The finding,
while interesting, also highlights that many of the images either within the category of 'no
feeling’ were pleasing of boring. This highlights the ambiguity of assessing the sentiment
of images.

ALIPR Classes

ALIPR_ 0 2 10 1.png
‘ ALIPR_1 2 11 1.png

o

Fear
Amusement

Data Type :{'Categorical_Nominal Classes'}
Ground Truth : {'"Amusement’, 'Fear'}

Figure A.6: Examples of ALIPR nominal classes of sentiment tagged images



A.0.7 Aesthetic Visual Analysis AVA

The AVA dataset that is the subject of this thesis is the third largest dataset reviewed
within this section, and remains the most well established and canonised example of an
IAQA. It is cited within 203 IEEE journals and 305 journals more widely [164].

Further, it also maintains the most normal distribution, which is lower than that of other
datasets such as PhotoNet. Further still, the distribution of the number of ratings is more
approaching normal than the datasets of photo.net, which has large negative skew.

The AVA[2], [16], [45], [54], [62], [66], [124], [126], [128], [129], [136], [146], [153], [158],
[161], [162], [195]-[197] database is the database used within this study, and is to date
the largest bench-marked dataset from a single source[128], [136].

The AVA dataset was originally scraped from DP.Challenge.com (the namesake of the
earlier database). Each image within the AVA Dataset is ranked from 0-10 with (insert
mean number of votes per image).

The images are voted on by challenge participants, and voting can take place both during
and after competitions.

A.0.8 Chinese University of Honk - Kong-Photo Quality (CUHK-PQ)

The CUHK-PQ dataset was introduced by[55] and consists of 17,673[55] ~ 17,613[98]
high quality images scraped from photo communities and low quality provided by uni-
versity students with meta data on the score. The dataset also excludes photos with less
than 100 votes to ensure a high degree of confidence. Further, the dataset consists of
only absolute top and bottom quality classes 1 and 10 where voters on dp.challage.com
are able to score images on a scale of 1-10.

i * ]

Figure A.7: some examples of high and low quality images form the CUHK-PQ dataset - top is high and bottom is low quality

The CUHK-PQ has a 0.5/0.5 test train split. This dataset was compiled largely with an
objective on undertaking machine learning with hand-crafted features.

Others, such as [56], [196], have used a subset of this dataset to perform IAQA experi-
ments. Images are further sub-grouped into scene categories of:

€ {landscape, plant ,animal ,night , human, static,architecture}



A.0.9 DP Challenge

Were amongst the earliest examples of an IAQA dataset[16] and present the first dataset
thatis thresholded into binary categories high and low categories[157]. This dataset was
initially defined in 2008, however has either been used or obtained new images by [12],
[64], [66], [148], [1501, [152], [163], [198], [199] and others. DP.challenge.com is also the
source of the AVA bench-marking dataset [98].

To date, there are 330k images on the www.dpchallenge.com and it remains the largest
source of images with recorded MOS that are freely available.

Flickr AES

The three datasets that are subsets of available images on the Flickr photo-sharing site
are focused on particular fields of study, where researchers have required data on how
individuals have related images. There are several so-called Flicker datasets, and the
term has been somewhat ambiguously used within the literature.

[159] compile a dataset of 9,600 images with geotagging from Twitter, located from a
large auxiliary dataset of 32,00 images. With 8 scene categories, where images are se-
lected from top and bottom categories.

[160] collected Amazon Mechanical Turk (AMT) ratings from 1-5 by five different workers
to create ground truth. The 4,737 test images of the dataset proposes the authors are
also able to model how individual labels and measure against image datasets.

[186] web scraped 70,00 ~ 90,00 images from 35 identified Flickr groups. They treat
each image set separately, and do not provide test training splits or public versions of
the dataset. The largest early example of Flickr as a data source is [200], who scraped
80,000 highly rated images for unsupervised learning using hand-crafted features.

[67] also compile their own dataset from Flickr to highlight challenges in deriving user
produced data from social media sources (such as Flickr) where the number of likes is
taken as a proxy for quality.
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DPChallenge

dpchallenge_0_2_201_1.png dpchallenge_1_2_202_1.png

High
Data Type :{'Categorical_Binary'}
Ground Truth : {'low', 'high'}

Figure A.8: DPChallange Dataset binary classes left high quality right low quality

Flickr AES
Flickr_AES_1_29_86_1.png

Flickr_AES_3_29_88_1.png

High High
Flickr_AES_19_29_104_1.png Flickr_AES_20_29_105_1.png

Ocean lake

Data Type :{'Categorical_Binary', ‘Categorical Nominal'}
Ground Truth : {'People’, 'Ocean Lake', 'high'}

Figure A.9: Examples of 7 AES data-set binary classes
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Image Aesthetic Database(lAD)

To date, this is the largest dataset of IAQA and is derived from DPChallenge (300k) images
and w.2 million images form PhotoNet. The mean score image from PhotoNet[161, p. 12]
thresholded images from dpchallenge.com and PHOTO.NET.

The threshold boundary for PHOTO.NET is 4.88 and they remove all data within the AVA
dataset inter quarterly range (IQR), and are left with only the top and bottom 20% of
images. A.10 shows examples of high and low quality images after thresholding.

IAD

IAD_4_37_153_1.jpeg IAD_1_37_150.png

High
IAD_31_37_180_1.jpeg

B

High

Data Type :{'Categorical_Binary'}
Ground Truth : {'low’, 'high'}

Figure A.10: Examples of IAD data-set binary classes

DP.challenge.com has a rating of 1-7 compared to AVA's 1-10, and their whole thresh-
old follows on in principle. Similarly, the distribution of photo.net surfers - for being
more atypical to DPChallenge images (this in itself is an interesting and noteworthy phe-
nomenon) and in spite of a much high number of images, show distribution of scores
less uniform and with a much higher degree of variability.

while Lu, Lin, Jin, etal.[140] were able to leverage an increased dataset size for state of the
artresults at the time of publication, it is noteworthy that many more recent publications
have far surpassed their accuracy using only the AVA bench-marking dataset [59], [99],
[126], [136], [195].

Further, the authors make mention of 300k images from DPchallenge; to date, there
are 330k images and the date they were rescraped would have therefore included the
AVA test images, given that it would not have been possible to obtain 300k images from
Dpchallenge in 2016 without including the ~ 20k test images (as there would not have
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been 90k 'new images’ without including them).

Photo Critique Captioning Dataset PCCD

This dataset consists of images scraped from a single source [122], [201] and is based
on professionally reviewed of photos where comments are given on general impression,
composition, perspective, colour and lighting with a subset of photo, DOF, use of camera
exposure and shutter-speed.

Figure A.11 shows some particularly high quality images subjectively.

PCCD

PCCD_2_8_190_1.png PCCD_5_8 193_1.png

High High
PCCD_1_8_189_1.png PCCD_3 8 191 1.png

-y =

-

High High‘ —
Data Type :{'Categorical_Binary'}
Ground Truth : {'"High'}

Figure A.11: Examples of PCCD dataset

One notable feature of this is the high ratio of comments to image, with ~ 60k captions.
Each image is given a numerical rating of 1-10.

Photo.Net

This originally consisted of 3,581[15] images, however later publications [202] augment
this or re-scrape images to derive datasets of 20276 net. One distinction is that while
many of the datasets are, in practice, thresholded into binary € {good, bad } that Photo.Net
has ranked 1-7.

Waterloo I1AA

This small dataset was compiled for content subjective assessment, while it is not in itself
large enough to meaningfully conduct deep learning based approaches.

[62] compile a rich database of aesthetic features that are collated under controlled con-
ditions. The associate publication also demonstrates, for instance, that it is difficult for
humans to assess aesthetics from a single factor, but rather that it is in consideration of
combinations of factors.
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The data was compiled using a computer program where users have a sliding scale, and
are able to use a graphics user interface (GUI) in order to capture rating feedback from
experimental subjects. The feedback is then used to subset the data for traditional sta-
tistical analysis, rather than machine or statistical learning.

This represent a similar approach to AADB datasets in its rigorously paired down subcat-
egories.

Liu W.[62] also apply high levels of scientific rigour to controlling the environment in
which the data is captured from subjects, for example calibrating the screen and report-
ing its results.

A.0.10 Dataset Conclusion

The datasets reviewed here are by no means exhaustive, and the review of IAQA datasets
could comprise an entire literature review or survey paper in its own right.

There are fascinating and bespoke examples of user rated databases and retrieval sys-
tem such as Terra Galleria[203] which are well canonised[202], [204], [205] images of a
single genre, a single photographer, but with voting data of scores between 1-10.

In addition to deep learning that has been leveraged for evaluation of individual artists
such as Andy Lomas[206], both of which are well canonised examples of more bespoke
datasets. Some earlier examples of hand-crafted features scrape inames for a single
source such as [200].

There are also dasasets on the wider domain of IAQA, such as Chinese Handwriting Aes-
thetic Evaluation Database CHAED [&].

The terminology used, including abbreviations of different databases, are not consistent
throughout the literature. This is for three reasons:

1. First, that the source of the databases such as Flickr, DPChallange, or Photo.Net
have been used within database nomenclature to indicate datasets, many of which
are themselves subsets of other datasets, [124] also use the title of a paper as the
acronym for a dataset that was created by the authors.

2. Second, and perhaps tangential to the slippage in nomenclature between dataset
and source, there there are some inconsistencies in literature for instance [61] use
the term Photo web citing [15] where the term Photo.Net is used.

3. Third, that subsetting of datasets within individual publications, while retaining the
super set name, makes the process of effective bench-marking and maintaining
the official test train split.

This is challenging, as it leads to potential for inconsistent benchmarking and may serve
to dilute the absolute value of results where one subset may be present in test sets of
another set with no clear way to ensure that there is not what is in effect a data leak by
proxy, with [161] as an example of this.
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Photo Net High

Photo_net_0_5_196_1.png Photo_net_1_5_197_1.jpeg

High

Photo_net 3_5_199_1.png

6.78 out of 7
Data Type :{'Continuous_numeric', ‘Categorical_Binary'}
Ground Truth : {'3.77 out of 7', '6.78 out of 7', ‘'low’, 'high'}

3.77 out of 7

Figure A.12: Examples of PHOTO.NET

Cityscape Still-life Transportation

Figure A.13: Waterloo class examples
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Further, and perhaps in support of evidence of some lack of cohesion within IAQA com-
munity, datasets are not always consistently cited for instance [56, p. 539] cites [55] as a
source dataset and then subset this into an new dataset with a different ratio of positive
to negative class, which is then cited by [67, p. 4] as Photo Databse.

This is further compounded by the variability in nomenclature of derivative data sources
such as dp.challenge and Flickr. (Further, the dataset size is not always consistently re-
ported for individual dataset.)

One aspect of useful further research would be to provide a consistent high level frame-
work for IAQA dataset and a data schema, which might include a process of using image
retrieval to check for duplication’s and use of original site image ID’s where for instance
image ID’s are used within image urls .

An aspect of additional complexity is that there exists a high degree of sub-setting or
creating new datasets, as can be seen in some of the more recent and smaller datasets.
For instance, [64] upscales the approach of [122] onto an augmented AVA dataset by
web scraping further images for dp.challenge.com.
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